
Learning of Closed-Loop Motion Control

Farbod Farshidian, Michael Neunert and Jonas Buchli

Abstract— Learning motion control as a unified process of
designing the reference trajectory and the controller is one
of the most challenging problems in robotics. The complexity
of the problem prevents most of the existing optimization
algorithms from giving satisfactory results. While model-based
algorithms like iterative linear-quadratic-Gaussian (iLQG) can
be used to design a suitable controller for the motion control,
their performance is strongly limited by the model accuracy.
An inaccurate model may lead to degraded performance of
the controller on the physical system. Although using machine
learning approaches to learn the motion control on real systems
have been proven to be effective, their performance depends on
good initialization. To address these issues, this paper introduces
a two-step algorithm which combines the proven performance
of a model-based controller with a model-free method for
compensating for model inaccuracy. The first step optimizes the
problem using iLQG. Then, in the second step this controller
is used to initialize the policy for our PI2-01 reinforcement
learning algorithm. This algorithm is a derivation of the PI2
algorithm enabling more stable and faster convergence. The
performance of this method is demonstrated both in simulation
and experimental results.

I. INTRODUCTION

Motion planning and control is one of the long standing
challenges for the robotics community. A common approach
is to separate the motion trajectory design from the controller
design. Usually, a planner generates an open loop motion
and a feedback tracking controller then tries to force the
system to generate this desired motion. As both elements
are designed separately and might even have competing
goals, their combination is often suboptimal. In contrast, a
combined design approach allows one to optimize a single
controller that encodes both the motion planning and the
tracking behavior at the same time. Optimizing this controller
will directly lead to a better overall performance because
the controlled system dynamics can be better leveraged to
generate smoother and more agile motion.

Using control theory, the combined motion planning and
control problem can be transformed into an optimization
problem where the dynamics are represented as hard con-
straints. The result of this optimization is a closed loop con-
troller which contains a feedforward and a time-dependent
feedback term. Existing methods to solve this problem can
be grouped into model-based and model-free algorithms.

A. Model-based Algorithms

The optimal control method is one of the model-based
approaches which combines the trajectory and controller

Farbod Farshidian, Michael Neunert and Jonas Buchli are with the Agile
& Dexterous Robotics Lab at the Institute of Robotics and Intelligent
Systems, ETH Zurich, Switzerland. {farbodf, neunertm, buchlij}@ethz.ch

design into a single problem. The iLQG algorithm [1] is
one of the successful optimal control approaches which is in
fact the stochastic version of the well known Differential Dy-
namic Programming (DDP) method [2]. In general, model-
based algorithms like iLQG show superior performance in
simulation, but their performance in physical applications
is limited by the accuracy of the system model. Although
part of this modelling inaccuracy can be prevented by taking
more meticulous modelling techniques, part of it might
intentionally be plugged in, either to get a simpler model
or to obtain a linearizable one. These limitations restrict the
application of model-based methods on physical robots.

B. Model-free Algorithms

Another approach to simultaneously finding reference tra-
jectories and controllers is to use model-free machine learn-
ing techniques (e.g. [3], [4]). Among different approaches
in this area, reinforcement learning algorithms have shown
good performance both in simulation and in real world
applications. One of these reinforcement learning algorithms
is the Path Integral Policy Improvement (PI2) method [5].
The policy in the PI2 algorithm is defined as a dynamic
system, namely as Dynamic Movement Primitives (DMPs),
which represent a linearly parametrized policy. The policy
is primarily used to learn a reference trajectory. This ap-
proach is extended in [4] to not only learn the reference
trajectory, but also a time varying gain scheduling for a PD
controller. Therefore, the learning algorithm tries to optimize
the trajectory and the controller simultaneously. Another
powerful reinforcement learning algorithm is PI-BB [6]. This
algorithm is the black box variant of PI2 where instead of
using the cost function signal in each time step, only the
accumulated cost of the trajectory is used.

While existing learning algorithms show good perfor-
mance in refining given parameters, they have two main
issues. First, their success highly depends on the initial guess
because they are all local methods. Second, they just partially
leverage the domain knowledge of the designer e.g. the
knowledge about the system dynamics is totally ignored and
just the information provided from the samples is used.

C. Combining Model-free and Model-based Algorithms

In this paper, we attempt to combine the benefits of
both model-based and model-free approaches. Therefore, we
propose to separate the problem into two stages: derive a
model-based optimal controller and subsequently adapt this
controller using a learning algorithm. In this approach the
domain knowledge of the designer in the form of the system
model is exploited and delivered to the learning algorithm as

Preprint 22.6.2014 - To appear in Proceedings of the 2014 IEEE/RSJ International 
Conference on Intelligent Robots and Systems (IROS 2014) - (c) IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148006229?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


an optimized initial guess for the parameters. This domain
knowledge can vary from a simple up to a sophisticated
model. In contrast to a random initial guess, the optimized
controller can already stabilize an unstable system, enabling
the learning algorithm to sample useful data.

For the initial derivation of the controller iLQG is used.
For the subsequent learning, we propose a new algorithm
PI2-01, which is based on PI2. While the original PI2 leads
to unstable learning in our experiments, the modified time-
averaging in PI2-01 improves the stability. Also, the new
algorithm allows for using general, linearly parametrized
policies. Furthermore, the sampling policy is altered to
encourage a greedier exploration strategy. Note that using a
policy improvement method like PI2-01 is a design choice.
One can also consider to refine the available model through
hardware experiments and then use a model-based approach
to optimize the control policy based on the updated model
[7]. Although these approaches generalize better to other
tasks than policy search approaches, they tend to require
more samples to reach a similar performance.

To assess the performance of the proposed algorithm we
are using the ball-balancing robot (“ballbot”) Rezero [8]. For
our tests we will use both a simulation and the real robot.

D. Motion Planning for Ballbots

Ballbots are essentially 3D inverted pendulums and hence
are statically unstable, under-actuated, non-minimal phase
systems. Due to this instability, control and motion plan-
ning have to be tackled simultaneously and can even have
conflicting goals.

Prior to Rezero successful development of ballbots were
conducted by Hollis et al. [9] and Kumagai et al. [10].
However, motion planning on ballbots has not yet been
thoroughly addressed. Nagarajan et al. [11] use a separated
trajectory planning and tracking controller to generate a set of
motion primitives which are later connected to one trajectory
by a graph search algorithm. In another approach Shomin
et al. [12] suggest a differentially flat representation of the
system dynamics to generate trajectories.

II. PROBLEM DEFINITION AND APPROACH

Learning motion control is a complicated task which
requires learning both a feedforward and a state feedback
controller. This problem can be defined as an optimal control
problem where the desired behavior of the motion controller
is encoded in a cost function. In order to solve this opti-
mization problem, we approach the problem by leveraging
both, information obtained from both, the approximate model
knowledge as well as from sampling the real system.

A. Problem Definition

In its most general form we are assuming a control-affine
non-linear system given by

ẋ = f(x) + g(x)(u+ ε) (1)

where f(x) denotes the transition matrix and g(x) denotes
the control gain matrix. The current state and control input

are represented by x and u respectively. We assume that the
system can be linearized i.e. f(x) and g(x) are differentiable.
Furthermore, the system dynamics are subject to zero-mean
Gaussian noise ε acting on the control inputs.

The motion planning problem is a finite-horizon optimal
control problem. The goal is to find a linear, time-variant
state feedback controller with feedforward terms by solving
the optimal control problem. The controller is given by

u(x, t) = K(t)Tx′(t) (2)

where K(t) denotes a time-varying gain and x′(t) =
[1 x(t)]T defines the augmented state vector.

The controller will be optimized to fulfill a certain task or
behavior within a certain time horizon. In motion planning
and control applications the optimization goal is to bring
the system from an initial state x(0) randomly drawn from
a given set of initial states to a goal state x(tf ) while
optimizing the behavior during this transition. This task is
encoded in the cost function of the optimization problem.
The cost function is defined as:

J = E

[
h (x(tf )) +

tf−1∑
t=0

l (x(t), u(t))

]
(3)

containing the sum of intermediate costs l(x(t), u(t)) and a
final cost h(x(tf )). The intermediate cost is a function of
state and control input and is calculated at each time step of
the task execution except for the last step. The termination
cost only depends on the state vector at the final time step.

B. Proposed Approach

In order to leverage the model knowledge, we have chosen
to use the iLQG method. Depending on the accuracy of the
available model, the obtained solution could provide near
optimal performance on the real system.

As the system model differs from the true system dy-
namics, real system information is leveraged afterwards by
applying reinforcement learning. For this, we are using a
derivative of PI2, namely PI2-01 (see Section IV).

The two sequential methods are integrated by initializing
PI2-01 with the iLQG controller. As PI2-01 shares the same
assumptions for the cost function as iLQG, we can use
a single cost function for both algorithms. As a result,
both methods optimize towards the same target behavior.
Furthermore, a shared cost function guarantees that this
function is not tuned towards a specific algorithm but encodes
the desired behavior in a general form.

By optimizing over a common cost function, the learning
algorithm is initialized with a near-optimal policy. This is
especially important as reinforcement learning algorithms are
local methods and hence require a good initialization.

III. INITIALIZATION USING ILQG

As mentioned earlier, we are using iLGQ to derive an
initial control policy. This algorithm provides a time indexed
state feedback plus feedforward control law as indicated in
equation (2). The main idea behind the iLQG algorithm is
to iteratively linearize the system equations along nominal



trajectories in the states and the control inputs. Then, a LQG
controller for the linearized model is computed. Finally, the
system is simulated using the designed controller to get new
nominal trajectories. This process continues until the solution
reaches a local minimum. For more details about the iLQG
algorithm we refer to [1].

Since iLQG is a local optimization method, we need to
initialize this algorithm from a stable nominal trajectory.
Here, we are initializing the iLQG algorithm with an infinite-
time LQR controller. This LQR controller is designed for the
system linearized around one of its equilibrium points and
uses simple diagonal state and control cost matrices.

IV. LEARNING

A. Learning Policy

The number of parameters in the iLQG controller is
proportional to the time horizon and inversely proportional to
the sampling time. Per time step, the iLQG controller consists
of n+1 parameters per control input (one for the feedforward
term and n parameters for the n states). Optimizing over all
of these parameters would require a lot of samples, leading
to a slow learning rate. To reduce the number of parameters,
we consider using smooth base functions instead of using
functions indexed over time. For the present algorithm, the
learning policy’s base function Ψ(t, x) is defined over time
t and state x using Gaussian functions as follows:

Ψ(t, x) =
[
Ψi(t, x)

]
N×1

=
[
e
− 1

2

(t−ci)
2

σ2
i x′

]
N×1

(4)

where N is the number of the total Gaussian functions and ci
and σ2

i are respectively the center and the covariance of the
of the ith Gaussian function. As x′ denotes the augmented
state of size n+1, Ψ(t, x) is a vector with length N(n+1).

The center and covariance of the base functions need to
be chosen according to the given problem. For simplicity,
one can just distribute the Gaussian functions uniformly
over the execution time interval and choose one covariance
for all the functions. Also, in defining the covariance, one
can use the rule of thumb that neighbouring Gaussian base
functions should intersect at one third of their peak value.
N is chosen proportional to the task’s duration. Here, 1 to 3
bases function per second seem reasonable.

Given this base function, the policy (or in other words
the controller) will be the inner product of the base function
vector with the parameter matrix as follows:

u(t, x) = ΘTΨ(t, x) (5)

where Θ denotes the parameter matrix in which each column
corresponds to one control input.

Since the controller resulting from the iLQG algorithm is
used as the initial policy for the learning algorithm, it should
be mapped to the policy representation as given in (5). As
the number of parameters in the iLGQ parametrization is
higher than the one of the learning policy, this is a many-to-
one mapping. Therefore, in order to minimize the differences
between both representations, least squares over equating-
coefficients can be used. This method minimizes the sum of

Algorithm 1 PI2-01 Algorithm
Given
- Policy as in (5)
- Cost function J = h (x(tf )) +

∑tf−1

t=0 l (x(t), u(t))
- Parameter regularization matrix R
Initialization
- Initialize θ; δθ ← 0,
- c← noise initial standard deviation
repeat

- Create K roll-outs of the system with the policy parameter θ + ε, ε ∼
N (cδθ, c2I)

- Reshape Ψ(t, x) to


g1x
′T

...
gNx

′T

, gi = e
− 1

2
(t−ci)

2

σ2
i

for the ith control input do
for all the columns of Ψ(t, x) = [Ψj ] do

- Reshape the the ith column of Θ to match Ψ(t, x)
for the kth roll-out do

for each time, t do

- Mk(t) =
R−1ΨkjΨkj

T

Ψk
j
T
R−1Ψk

j

- θ̂(t) = θji +Mk(t)ε

- Q(τk(t)) = h (x(tf )) +
∑tf−1

t l (x(t), u(t))

- S(τk(t)) = Q(τk(t)) +
∑tf−1

t θ̂(t)TRθ̂(t)

- P (τk(t)) = e
− 1
λ
S(τk(t))∑K

k=1
e
− 1
λ
S(τk(t))

end for
end for
- wij(t) =

∑K
k=1 P (τk(t))Ψkj

- δθji(t) =
∑K
k=1 P (τk(t))Mk(t)ε

end for
- Reshape δθji(t) back to δθi(t)
- Reshape wji(t) back to wi(t)

- δθi =
∑tf−1

t=0 wi(t)δθi(t)∑tf−1

t=0 wi(t)

end for
- Decrease c for noise annealing

until maximum number of iterations

squared errors between both representations over the task’s
time interval. In this way, the best fit of the learning policy
to a given iLQG controller can be computed. Although it
cannot be guaranteed that the approximated policy inherits
the stability properties of the iLQG controller, the fitting
method works well in practice and so far has always led
to stable initial learning policies.

B. PI2-01 Algorithm

PI2-01 has a more general class of policies than PI2 [5]
where DMPs are used for representing the policy. In contrast,
the newly introduced PI2-01 uses a parametrization method
similar to the one introduced in [4] for learning impedance
control. Instead of using DMPs, the approach assumes a
very fast intermediate system. The fast dynamics of this
system are practically negligible compared to the system
dynamics. Therefore, one can assume that the parametrized
policy directly acts on the system inputs. As DMPs are
omitted, the update formula of PI2-01 looks similar to the
one in the PoWER algorithm [13]. However, PoWER is more
restrictive on the choice of cost functions [5].

Despite the similarity between PI2-01 and the one in [4],
there is a major difference with respect to the controller
parametrization and structure. The method presented in [4]
uses a conventional PD controller where the reference tra-
jectory and the gain scheduling are learned simultaneously.
Also, to keep the number of parameters in the algorithm
low, the damping gain is defined as a function of the



parameter space

sampling probability t
sampling probability t+1

parameter update
parameter extrapolation

sampled parameter
nominal parameter
updated nominal parameter 
extrapolated nominal parameter

Fig. 1: Illustration of the improved exploration method of PI2-
01. Instead of sampling around the updated parameter, PI2-01
extrapolates the sampling center in update direction.

proportional gain. Furthermore, the feedforward controller
is not included in the learning process. In contrast, here we
are learning simultaneously a full state feedback controller
plus a feedforward controller. This way of parametrizing
the controller blends the reference trajectory design with the
feedforward design. As a result, the number of parameters in
this algorithm is increased. However, the modification made
to the original PI2 algorithm keeps the implementation still
tractable. Algorithm 1 illustrates the pseudo code for the
proposed method.

1) Exploration in PI2-01: An important factor for the
success of a learning algorithm is the exploration noise.
In the presented algorithm as well as suggested in [6], a
constant noise is added to the parameter vector as opposed
to a time varying noise. In general, this way of inserting the
exploration noise produces smoother trajectories which is an
important empirical consideration. However, in contrast to
the CMA-ES algorithm which tries to modify the covariance
of the noise for more efficient exploration, here the mean
of the exploration noise is modified between iterations.
This method has an advantage over the modification of
the covariance in problems with many parameters and few
samples per roll-out. The reason is related to the character-
istic of the update rule in the PI2 algorithm. The updated
nominal parameter (white triangle in Figure 1) will always
lie within the convex hull (large white dashed triangle)
of the sampled parameters (white circles). Therefore, by
adding zero mean noise to the updated nominal parameter,
new samples will likely lie inside the convex hull as well.
Thus, these samples do not provide any new information
to the learning algorithm. In contrast to this approach,
gradient descent algorithms typically choose new parameters
outside the hull of samples which gives these algorithms
better exploration capabilities. In the current algorithm, a
similar approach is used for exploration. With this improved
exploration strategy, the algorithm will benefit from both,
the robustness of the PI2 algorithm and the exploration
power of gradient based methods. To implement this idea,
the exploration policy distribution is centred at the distance
of the noise’s standard deviation of the updated parameter
(red arrow) in the direction of the latest parameter update
(yellow arrow). This approach decreases the probability of
choosing samples inside the convex hull.

2) Time-averaging method: In the original PI2 algorithm
the time-averaging weights are defined as a function of
kernel activation. Since the function approximation is done

on the phase variable rather than time, all the rollouts have
the same kernel activation. Contrarily, in PI2-01 the kernels
are trajectory dependent as they are defined over time and
state variables. Therefore, the time-averaging weights in
PI2-01 are chosen as the average of the kernel activation
over the trajectory probabilities of the corresponding rollout.
Furthermore, the time-averaging method of PI2-01 does not
emphasize the parameters corresponding to the beginning of
the trajectory but treats them equally throughout the entire
trajectory. This approach is better suited for non-DMP based
learning. For more details refer to Algorithm 1.

V. RESULTS

In order to compare the performance of existing algorithms
as well as the proposed approach several experiments in
simulation and on hardware are made. First, we will compare
the different approaches in simulation. Then, the proposed
approach is used on the ballbot Rezero to prove the practi-
cality of the developed algorithm.

A. Experimental Setup

1) Hardware: The ballbot Rezero used for the experi-
ments consists of three major elements: the ball, the propul-
sion unit and the upper body. The ball is driven by three
omniwheels mounted on brushless motors with planetary
gear heads. Through optical encoders on the motors and
odometry, the ball rotation is measured. An IMU on the robot
estimates the body angles and body angle rates of the robot.
Hence, all states are directly measured by on-board sensors.

2) Robot model: For the simulation and the derivation of
controllers a non-linear 3D model of the system dynamics
of Rezero has been analytically derived [8]. In this paper
a slightly simplified model is used in which the wheel
dynamics are neglected. This model describes the robot as
two rigid bodies: the ball and the upper body. It assumes
that no slip and no friction occurs. While the state and the
control input are briefly introduced in this section we refer
to [8] for the full description of the model.

The state x of Rezero is defined as

x =
[
ϑx ϑ̇x ϑy ϑ̇y ϑz ϑ̇z ϕx ϕ̇x ϕy ϕ̇y

]T
The state vector x consists of the body angles with respect
to gravity (ϑx, ϑy , ϑz) and its derivatives (ϑ̇x, ϑ̇y , ϑ̇z)
which represent the angular velocities. Furthermore, the state
includes the rotational angles of the ball (ϕx, ϕy) as well
as their derivatives (ϕ̇x, ϕ̇y) to represent the ball’s position
with respect to a reference position (e.g. start position) and
the ball’s velocity, respectively. u = [τ1, τ2, τ3]T defines the
controller input vector, i.e. the motor torques.

B. Test Cases and Results

1) Cost Function: Throughout all of the experiments the
exact same cost function is used. The goal is to control the
robot from an initial state to a final state within 6 seconds. At
the final time, the center of the ball should be at the [3, 1]T

meter from its starting position and the robot should also
have zero velocity, zero tilt angles and tilt angle rates as well



0 5 10 15 20 25 30
5

10

15

iteration

co
st

 (
P

I−
B

B
 a

nd
 P

I2 −
01

)

 

 

0 5 10 15 20 25 30

0

5000

co
st

 (
P

I2 )

PI−BB

PI2−01

PI2

Fig. 2: Comparison of the different learning algorithms in simu-
lation (standard deviation scaled to half). PI2 (displayed on right
y-axis) becomes unstable. PI2-BB converges but with high variance.
PI2-01 learns faster with low variance and achieves the lowest cost
in the test. 10 rollouts (4 new ones, 6 reused) are used per iteration.

as zero change in the heading. The designed cost function
has the same form as in (3) where intermediate l (x, u) and
final h (x) costs are defined as follows:

l (x, u) = 10ϑ2
z + ϑ̇2

z + 1.5uTu

h (x) = 10(x− xd)TH(x− xd)

where H and xd are defined as:

H = diag(1, 2, 1, 2, 1, 2, 10r2, 4r2, 10r2, 4r2)

xd =
[
0 0 0 0 0 0 3/r 0 1/r 0

]T
where r denotes the radius of the ball the robot balances on.
The numerical parameters of the cost functions are hand-
tuned in simulation and validated on the hardware.

2) Policy parametrization: For approximating the time
variation of the control inputs, 15 Gaussian functions are
used. Therefore, the control policy has in total 495 param-
eters. Without this re-parametrization the 11 states and 3
control inputs would lead e.g. to 9900 parameters assuming
a sampling rate of 50 Hz and a time horizon of 6 seconds.

3) Simulation: In order to validate the proposed algo-
rithm, the performance of the PI2-01 algorithm is com-
pared with the two state-of-the-art reinforcement algorithms,
namely the PI2 algorithm and PI-BB. To have a fair compar-
ison all the algorithms use iLQG for parameter initialization.
Also, to verify that the learning approach is able to adapt the
controller to model inaccuracies, different model parameters
are used for the design of the iLQG controller and for
generating samples. Namely, the total mass and the ball
radius of the iLQG model are increased by 10%. One
observation during this experiment is the fast convergence
of the iLQG method in simulation. The algorithm converges
within at most 3 iterations. This feature makes this algorithm
a suitable choice for initializing the learning algorithm.

Figure 2 compares the achieved costs of the different
learning algorithms. Each iteration consists of 10 rollouts (4
newly generated and 6 best from the previous iteration). The
graph shows the mean and standard deviation σ (to enhance
the readability we plot 0.5σ) of the learning curves over 10
independent runs of each algorithm.

For PI2 a constant exploration noise instead of a time-
varying noise is used (as suggested in [6]). However, in

0 2 4 6 8 10 12
50

60

70

80

90

iteration

co
st

s

 

 

PI2−01 (test 1)
PI2−01 (test 2)
mean

Fig. 3: Two equal learning experiments on hardware using PI2-01.
The plot shows the learning curves for test 1 (solid) and test 2
(dashed). While initial costs vary over the experiments the learned
trajectories achieve costs of around 60 (15-30% improvement). Per
iteration 8 rollouts (4 new, 4 reused) are used.

this experiment, the PI2 algorithm mostly diverges after few
iterations. The main reason for this behavior is the naive
time-averaging method in PI2 which is modified in PI2-01.
But even if the same time-averaging method is used in PI2,
its convergence rate is still lower than PI2-01, mostly because
of the different exploration policy used in PI2-01.

The results show that PI2-01 also outperforms PI-BB with
respect to both the convergence rate and the variance of the
cost. This comparison emphasizes the importance of using
the individual time indexed elements of the cost function
rather than just using the total cost accumulated over time.

4) Hardware: To validate the performance of PI2-01
on real systems, two equal hardware tests are conducted.
Both tests are initialized with the same iLGQ controller as
optimized in simulation. While this controller, as shown,
achieves very low costs in simulation (usually between 10
and 14) the initial performance on the hardware is lower
(see iteration 0 in figure 3) and varies due to sensor and
actuator noise. The main reason for the cost increase is the
difference between the model and the hardware. Many effects
like actuator dynamics, gear backlash or the elasticity of the
ball are difficult to model and therefore not included. Also,
measured or calculated parameters such as inertia deviate
from their real values.

After running iLQG, PI2-01 is initiated. In both tests we
are performing 12 iterations of the learning algorithm with 8
rollouts per iteration. From each iteration the 4 best rollouts
(out of the total 8) are carried over to the next iteration. The
exploration noise is decreased compared to the simulation
test as the process noise provides additional exploration.

After each iteration the updated policy is rolled out and the
costs of the performance is calculated. Figure 2 shows this
cost after each iteration. One observation during the learning
is that the sampled rollouts are subject to high process noise.
However, the learning algorithm is still able to learn a policy
with approximately 15-30% reduced cost within 5 iterations
(see Figure 3). In the subsequent iterations rollouts vary less
and indicating that the learning has converged.

Figure 4 shows a comparison of the robot’s upper body
tilt angles with respect to gravity for iLQG and the learned
motion in test 2 (results obtained from test 1 are comparable
and therefore not shown). PI2-01 performs the desired motion
with smaller tilt angles leading to less overshoot in position
(as shown in Figure 5). Furthermore, the learned trajectory



0 1 2 3 4 5 6

−0.1

−0.05

0

0.05

0.1

t [s]

ϑ x [r
ad

]

 

 

iLQG
PI2−01 (iteration 12)

Fig. 4: Rezero’s tilt angle ϑx for test 1 on hardware. PI2-01 after
12 iterations produces a smoother trajectory than iLQG.

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

x [m]

y 
[m

]

 

 

iLQG
PI2−01 (iteration 3)
PI2−01 (iteration 12)

Fig. 5: Trajectory comparison for test 2 on hardware. While iLGQ
takes a shorter path than PI2-01 (iteration 3 and 12), its larger final
distance to the goal and the increased overshoot lead to higher costs.

approaches the goal state more gracefully and with lower
gains. Hence, chattering due to gear backlash (as seen around
4.8 ≤ t ≤ 6 in the motor torques in Figure 6) is not present
in the motion control of PI2-01. Learning tends to avoid
chattering as it leads to increased tilt angles and tilt angle
rates which are penalized in the cost function. This is a good
example for the adaptation of the learning algorithm to an
unmodelled (as difficult to model) system property.

VI. CONCLUSIONS
This work presents a general approach for learning motion

control. This process consists of two main steps. The first
step tries to leverage the information contained in a system
model and designs a model-based, iLQG controller. In gen-
eral the performance of this type of controller depends on
the accuracy of the model. As many robots contain non-
linear elements (e.g. flexible parts, cable drives or harmonic
drives) or are subject to complex non-linear dynamics (e.g.
aerodynamics, rigid body dynamics or friction) sufficiently
precise system models cannot be provided. Hence, we need
to tune the designed controller on the real system. To
automate this process, a reinforcement learning approach
is proposed. The learning algorithm in this paper is named
PI2-01 which is a variant of the PI2 algorithm. In order to
make the algorithm more robust, the time-averaging of PI2 is
modified. Secondly, through a more sophisticated sampling
policy, the exploration of the algorithm is improved.

To verify the performance, the algorithm is implemented
on the ballbot Rezero. Tests are performed both in sim-
ulation and on the real system. In simulation the PI2-01
algorithm shows clearly better performance than both the
original PI2 and the PI-BB algorithms. Also, the algorithm
is proven to work equally well on the hardware. The fact
that the proposed method can learn motion controllers both
in simulation and on hardware proves the scalability of the
proposed method for systems with medium state size. In the

0 1 2 3 4 5 6

−2

0

2

t [s]

τ 1 [N
m

]

 

 

iLQG
PI2−01 (iteration 12)

Fig. 6: Torque command of motor 1 for test 1 on hardware. The
iLQG controller suffers from chattering due to gear backlash at the
end of the trajectory while iteration 12 of PI2-01 shows a smoother
torque output. The other two motors show the same effect.

future, we will investigate the scalability of the approach to
systems with a higher number of states like legged robots.

Finally, this work proves that the combination of a suitable
function approximation method and an efficient learning
strategy is able to optimize a fairly complex controller in few
iterations. The proposed algorithm’s ability to learn full state
feedback plus feedforward control on a high-dimensional
system places it in a group of few but very successful
combined motion control approaches.

ACKNOWLEDGEMENT

We gratefully acknowledge Péter Fankhauser and the Autonomous Sys-
tems Lab for their support with Rezero.

This research has been funded partially through a Swiss National Science
Foundation Professorship award to Jonas Buchli, the NCCR Robotics and
the EU Project BALANCE (Grant 601003, EU FP7 program).

REFERENCES

[1] E. Todorov and W. Li, “A generalized iterative lqg method for locally-
optimal feedback control of constrained nonlinear stochastic systems,”
in Proc. of the American Control Conference, 2005.

[2] D. Mayne, “A second-order gradient method for determining optimal
trajectories of non-linear discrete-time systems,” International Journal
of Control, vol. 3, no. 1, 1966.

[3] F. Stulp, J. Buchli, E. Theodorou, and S. Schaal, “Reinforcement
learning of full-body humanoid motor skills,” in Proc. of the IEEE-
RAS International Conference on Humanoid Robots, 2010.

[4] J. Buchli, F. Stulp, E. Theodorou, and S. Schaal, “Learning variable
impedance control,” The International Journal of Robotics Research,
vol. 30, no. 7, 2011.

[5] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” The Journal of Machine
Learning Research, vol. 11, 2010.

[6] F. Stulp, O. Sigaud, et al., “Policy improvement methods: Between
black-box optimization and episodic reinforcement learning,” 2012.

[7] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and data-
efficient approach to policy search,” in Proc. of the 28th International
Conference on Machine Learning, 2011.

[8] P. Fankhauser and C. Gwerder, “Modeling and control of a ballbot,”
Bachelor thesis, ETH Zurich, 2010.

[9] T. Lauwers, G. Kantor, and R. Hollis, “A dynamically stable single-
wheeled mobile robot with inverse mouse-ball drive,” in Proc. of the
IEEE International Conference on Robotics and Automation, 2006.

[10] M. Kumagai and T. Ochiai, “Development of a robot balancing on
a ball,” in International Conference on Control, Automation and
Systems, 2008.

[11] U. Nagarajan and R. Hollis, “Shape space planner for shape-
accelerated balancing mobile robots,” The International Journal of
Robotics Research, vol. 32, no. 11, 2013.

[12] M. Shomin and R. Hollis, “Differentially flat trajectory generation for
a dynamically stable mobile robot,” in Proc. of the IEEE International
Conference on Robotics and Automation, 2013.

[13] J. Kober and J. R. Peters, “Policy search for motor primitives in
robotics,” in Proc. of the Advances in Neural Information Processing
Systems, 2008.


