220 research outputs found

    Using GAMA to probe the impact of small-scale galaxy physics on nonlinear redshift-space distortions

    Get PDF
    We present improved modelling of the redshift-space distortions of galaxy clustering that arise from peculiar velocities. We create mock galaxy catalogues in the framework of the halo model, using data from the Bolshoi project. These mock galaxy populations are inserted into the haloes with additional degrees of freedom that govern spatial and kinematical biases of the galaxy populations relative to the dark matter. We explore this generalised halo model with an MCMC algorithm, comparing the predictions to data from the Galaxy And Mass Assembly (GAMA) survey, and thus derive one of the first constraints on the detailed kinematic degrees of freedom for satellite galaxies within haloes. With this approach, the distortions of the redshift-space galaxy autocorrelations can be accounted for down to spatial separations close to 10 kpc, opening the prospect of improved RSD measurements of the perturbation growth rate by the inclusion of data from nonlinear scales.Comment: 19 pages, 10 figures, comments are welcom

    Trends in the availability and usage of electrophysical agents in physiotherapy practices from 1990 to 2010: A review

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 Maney PublishingBackground: The use of electrophysical agents has a historically important role in physiotherapy practice. There are anecdotal reports that the availability and usage of electrotherapy modalities are declining, which may have implications for physiotherapy practice. The aim of this literature review was to provide scientific evidence on electrotherapy usage in the last 20 years by identifying trends in availability, use, and non-use of nine electrotherapeutic modalities in physiotherapy practices during 1990s and 2000s. Methods: Review of empirical studies published in the English language from 1990 to 2010 and identified through searching online bibliographic databases, which included: Medline/OvidSP, PubMed Central, CINAHL/EBSCOhost, ScienceDirect, Scopus, ISI Web of Science, and Google Scholar. Findings: In the last 20 years, ultrasound availability and usage show increasing trends in several countries. The availability and use of pulsed shortwave diathermy and laser have shown steady trends. Transcutaneous electrical nerve stimulation, interferential, and biofeedback availability and usage have shown increasing trends in the UK and decreasing trends in Australia and the Republic of Ireland. Trends of continuous shortwave diathermy availability and use are declining irrespective of the country of the study. The availability and usage of microwave diathermy and H-wave show steeply declining trends, while there is a sharp rise in their non-availability over the last several years. Conclusions: The availability and use of electrophysical agents have greatly changed in the last 20 years. Declining trends in the availability and usage along with increasing trend of non-availability of electrotherapy modalities may have implications for electrotherapy education, training, and practice in the coming years.This study was funded by Health & Safety Executive, UK (grant no. 4371/R47.022)

    Heterostructures of GaN with SiC and ZnO enhance carrier stability and separation in framework semiconductors

    Get PDF
    A computational approach, using the density functional theory, is employed to describe the enhanced electron-hole stability and separation in a novel class of semiconducting composite materials, with the so-called double bubble structural motif, which can be used for photocatalytic applications. We examine the double bubble containing SiC mixed with either GaN or ZnO, as well as related motifs that prove to have low formation energies. We find that a 24-atom SiC sodalite cage inside a 96-atom ZnO cage possesses electronic properties that make this material suitable for solar radiation absorption applications. Surprisingly stable, the inverse structure, with ZnO inside SiC, was found to show a large deformation of the double bubble and a strong localisation of the photo-excited electron charge carriers, with the lowest band gap of ca. 2.15 eV of the composite materials considered. The nanoporous nature of these materials could indicate their suitability for thermoelectric applications

    Selected trace element uptake by rice grain as affected by soil arsenic, water management and cultivar -a field investigation

    Get PDF
    Accumulation of arsenic (As) in rice grain was reported in many regions of the world, including the United States, which has been a threat to human health. This field research investigated the grain As accumulation and its relationship with the uptake of selenium (Se), molybdenum (Mo), and cadmium (Cd) in soils with and without monosodium methanearsonate (MSMA) amended, as effects of selected rice cultivars and water management. Results indicated that MSMA increased the accumulation of As and Se but decreased Mo for all six cultivars under four irrigation management. MSMA also increased grain-Cd in some cultivars. In no MSMA-amended soil (Native soil), intermittent flooding decreased grain-As by 66%, grain-Se by 21%, and grain-Mo by 63%, but increased grain-Cd by 64% in Zhe 733, a straighthead resistant cultivar, while in MSMA-amended soil, intermittent flooding decreased grain-As by 63% and grain-Mo by 44% but increased grain-Se by 68% and grain-Cd by three times. For all other five cultivars, intermittent flooding generally decreased grain-As and grain-Mo but increased grain-Se and grain-Cd. Zhe 733 cultivar resulted in the lowest grain concentrations of all trace elements in all water treatments. A negative grain As-Se correlation and a positive grain As-Mo correlation were significant but not the As-Cd correlation. This research showed that the uptake of As, Se, Mo, and Cd by rice grain occurred as a complex function of multiple variables, including cultivar type and soil chemistry. As a result, accumulation of As and other trace elements in rice grain may be controlled by selecting appropriate cultivars and adopting appropriate water management practices

    Acinetobacter baumannii Regulates Its Stress Responses via the BfmRS Two-Component Regulatory System

    Get PDF
    Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pilus/fimbria production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. IMPORTANCE Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism’s ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the gammaproteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii

    Thermodynamically accessible titanium clusters TiN, N = 2–32

    Get PDF
    We have performed a genetic algorithm search on the tight-binding interatomic potential energy surface (PES) for small TiN (N = 2–32) clusters. The low energy candidate clusters were further refined using density functional theory (DFT) calculations with the PBEsol exchange–correlation functional and evaluated with the PBEsol0 hybrid functional. The resulting clusters were analysed in terms of their structural features, growth mechanism and surface area. The results suggest a growth mechanism that is based on forming coordination centres by interpenetrating icosahedra, icositetrahedra and Frank–Kasper polyhedra. We identify centres of coordination, which act as centres of bulk nucleation in medium sized clusters and determine the morphological features of the cluster

    Soluble Aβ aggregates can inhibit prion propagation

    Get PDF
    Mammalian prions cause lethal neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD) and consist of multi-chain assemblies of misfolded cellular prion protein (PrPC). Ligands that bind to PrPC can inhibit prion propagation and neurotoxicity. Extensive prior work established that certain soluble assemblies of the Alzheimer's disease (AD)-associated amyloid β-protein (Aβ) can tightly bind to PrPC, and that this interaction may be relevant to their toxicity in AD. Here, we investigated whether such soluble Aβ assemblies might, conversely, have an inhibitory effect on prion propagation. Using cellular models of prion infection and propagation and distinct Aβ preparations, we found that the form of Aβ assemblies which most avidly bound to PrP in vitro also inhibited prion infection and propagation. By contrast, forms of Aβ which exhibit little or no binding to PrP were unable to attenuate prion propagation. These data suggest that soluble aggregates of Aβ can compete with prions for binding to PrPC and emphasize the bidirectional nature of the interplay between Aβ and PrPC in Alzheimer's and prion diseases. Such inhibitory effects of Aβ on prion propagation may contribute to the apparent fall-off in the incidence of sporadic CJD at advanced age where cerebral Aβ deposition is common

    Endostatin expression in a pancreatic cell line is modulated by a TNFα-dependent elastase

    Get PDF
    Endostatin, an inhibitor of angiogenesis, is a 20 kDa fragment of the basement membrane protein, collagen XVIII. The formation of endostatin relies upon the action of proteases on collagen XVIII. TNFα, produced by activated macrophages, is a multifunctional proinflammatory cytokine with known effects on endothelial function. We postulated that TNFα may modulate the activities of proteases and thus regulate endostatin formation in pancreatic cells. Collagen XVIII/endostatin mRNA was expressed in one pancreatic cell line, SUIT-2, but not in BxPc-3. The 20 kDa endostatin was found in the cell-conditioned medium of SUIT-2 cells. Precursor forms only were found in the cells. Exogenous endostatin was degraded by cellular lysates of SUIT-2 cells. Elastase activity was found in cell extracts but not the cell-conditioned media of SUIT-2 cells. Incubation of SUIT-2 cells with TNFα increased intracellular elastase activity and also increased secretion of endostatin into the medium. We conclude that endostatin is released by SUIT-2 cells and that increases in intracellular elastase, induced by TNFα, are correlated with increased secretion. Endostatin is however susceptible to degradation by intracellular proteases and if tissue injury accompanies inflammation, endostatin may be degraded, allowing angiogenesis to occur
    • …
    corecore