5,519 research outputs found

    Chaos, containment and change: responding to persistent offending by young people

    Get PDF
    This article reviews policy developments in Scotland concerning 'persistent young offenders' and then describes the design of a study intended to assist a local planning group in developing its response. The key findings of a review of casefiles of young people involved in persistent offending are reported. It emerges that youth crime and young people involved in offending are more complex and heterogeneous than is sometimes assumed. This, along with a review of some literature about desistance from offending, reaffirms the need for properly individualised interventions. Studies of 'desisters' suggest the centrality of effective and engaging working relationships in this process. However, these studies also re-assert the significance of the social contexts of workers’ efforts to bring 'change' out of 'chaos'. We conclude therefore that the 'new correctionalism' must be tempered with appreciation of the social exclusion of young people who offend

    Young people, crime and school exclusion: a case of some surprises

    Get PDF
    During the 1990s the number of young people being permanently excluded from schools in England and Wales increased dramatically from 2,910 (1990/91) to a peak of 12,700 (1996/97). Coinciding with this rise was a resurgence of the debate centring on lawless and delinquent youth. With the publication of Young People and Crime (Graham and Bowling 1995) and Misspent Youth (Audit Commission 1996) the 'common sense assumption' that exclusion from school inexorably promoted crime received wide support, with the school excludee portrayed as another latter day 'folk devil'. This article explores the link between school exclusion and juvenile crime, and offers some key findings from a research study undertaken with 56 young people who had experience of being excluded from school. Self-report interview questions reveal that whilst 40 of the young people had offended, 90% (36) reported that the onset of their offending commenced prior to their first exclusion. Moreover, 50 (89.2% of the total number of young people in the sample), stated that they were no more likely to offend subsequent to being excluded and 31 (55.4%) stated that they were less likely to offend during their exclusion period. Often, this was because on being excluded, they were 'grounded' by their parents

    Larval programming of post-hatch muscle growth and activity in Atlantic salmon (Salmo salar)

    Get PDF
    Larval muscle development in Atlantic salmon is known to be affected by temperature; however, the long term effects and possible mechanisms involved are less well understood. Therefore, the aim of this study was to evaluate the influence of egg incubation temperature on post-hatch muscle growth and fish activity. Salmon eggs were incubated at either 10°C or 5°C from fertilization until hatching, then subsequently both groups were reared at 5°C. Fish from both groups were sampled at the eyed stage, 6 and 21 weeks after first feeding, for muscle cellularity analysis and immunocytochemistry. In addition, to try to establish a mechanism for altered growth, the activity of the fish was measured at 3, 6 and 21 weeks after first feeding. Our results demonstrate that whereas fish incubated at 10°C grow faster, the fish incubated at 5°C show a more sustained period of muscle growth and by 21 weeks are significantly longer, heavier and have more muscle fibres than those fish incubated at a higher temperature. We also demonstrate that fish raised at 5°C show increased food seeking activity throughout development and that this may explain their sustained growth and muscle development. These results taken together, demonstrate that egg incubation temperature up to hatching in salmon is critical for longer term muscle growth, twinned with increased activity. This is of interest to the aquaculture industry in term of the production of good quality fish protein

    Data processing model for the CDF experiment

    Get PDF
    The data processing model for the CDF experiment is described. Data processing reconstructs events from parallel data streams taken with different combinations of physics event triggers and further splits the events into datasets of specialized physics datasets. The design of the processing control system faces strict requirements on bookkeeping records, which trace the status of data files and event contents during processing and storage. The computing architecture was updated to meet the mass data flow of the Run II data collection, recently upgraded to a maximum rate of 40 MByte/sec. The data processing facility consists of a large cluster of Linux computers with data movement managed by the CDF data handling system to a multi-petaByte Enstore tape library. The latest processing cycle has achieved a stable speed of 35 MByte/sec (3 TByte/day). It can be readily scaled by increasing CPU and data-handling capacity as required.Comment: 12 pages, 10 figures, submitted to IEEE-TN

    Angular Diameters of the G Subdwarf μ\mu Cassiopeiae A and the K Dwarfs σ\sigma Draconis and HR 511 from Interferometric Measurements with the CHARA Array

    Get PDF
    Using the longest baselines of the CHARA Array, we have measured the angular diameter of the G5 V subdwarf μ\mu Cas A, the first such determination for a halo population star. We compare this result to new diameters for the higher metallicity K0 V stars, σ\sigma Dra and HR 511, and find that the metal-poor star, μ\mu Cas A, has an effective temperature (Teff=5297±32T_{\rm eff}=5297\pm32 K), radius (R=0.791±0.008RR=0.791\pm0.008 R_{\rm \odot}), and absolute luminosity (L=0.442±0.014LL=0.442\pm0.014 L_{\rm \odot}) comparable to the other two stars with later spectral types. We show that stellar models show a discrepancy in the predicted temperature and radius for μ\mu Cas A, and we discuss these results and how they provide a key to understanding the fundamental relationships for stars with low metallicity.Comment: Accepted for publication in The Astrophysical Journa

    Toward Direct Detection of Hot Jupiters with Precision Closure Phase: Calibration Studies and First Results from the CHARA Array

    Full text link
    Direct detection of thermal emission from nearby hot Jupiters has greatly advanced our knowledge of extrasolar planets in recent years. Since hot Jupiter systems can be regarded as analogs of high contrast binaries, ground-based infrared long baseline interferometers have the potential to resolve them and detect their thermal emission with precision closure phase - a method that is immune to the systematic errors induced by the Earth's atmosphere. In this work, we present closure phase studies toward direct detection of nearby hot Jupiters using the CHARA interferometer array outfitted with the MIRC instrument. We carry out closure phase simulations and conduct a large number of observations for the best candidate {\upsion} And. Our experiments suggest the method is feasible with highly stable and precise closure phases. However, we also find much larger systematic errors than expected in the observations, most likely caused by dispersion across different wavelengths. We find that using higher spectral resolution modes (e.g., R=150) can significantly reduce the systematics. By combining all calibrators in an observing run together, we are able to roughly recalibrate the lower spectral resolution data, allowing us to obtain upper limits of the star-planet contrast ratios of {\upsion} And b across the H band. The data also allow us to get a refined stellar radius of 1.625\pm0.011 R\odot. Our best upper limit corresponds to a contrast ratio of 2.1\times10^3:1 with 90% confidence level at 1.52{\mu}m, suggesting that we are starting to have the capability of constraining atmospheric models of hot Jupiters with interferometry. With recent and upcoming improvements of CHARA/MIRC, the prospect of detecting emission from hot Jupiters with closure phases is promising.Comment: 30 pages, including 9 figures and 4 tables. Published in PASP in August 201

    Interferometric radii of bright Kepler stars with the CHARA Array: {\theta} Cygni and 16 Cygni A and B

    Get PDF
    We present the results of long-baseline optical interferometry observations using the Precision Astronomical Visual Observations (PAVO) beam combiner at the Center for High Angular Resolution Astronomy (CHARA) Array to measure the angular sizes of three bright Kepler stars: {\theta} Cygni, and both components of the binary system 16 Cygni. Supporting infrared observations were made with the Michigan Infrared Combiner (MIRC) and Classic beam combiner, also at the CHARA Array. We find limb-darkened angular diameters of 0.753+/-0.009 mas for {\theta} Cyg, 0.539+/-0.007 mas for 16 Cyg A and 0.490+/-0.006 mas for 16 Cyg B. The Kepler Mission has observed these stars with outstanding photometric precision, revealing the presence of solar-like oscillations. Due to the brightness of these stars the oscillations have exceptional signal-to-noise, allowing for detailed study through asteroseismology, and are well constrained by other observations. We have combined our interferometric diameters with Hipparcos parallaxes, spectrophotometric bolometric fluxes and the asteroseismic large frequency separation to measure linear radii ({\theta} Cyg: 1.48+/-0.02 Rsun, 16 Cyg A: 1.22+/-0.02 Rsun, 16 Cyg B: 1.12+/-0.02 Rsun), effective temperatures ({\theta} Cyg: 6749+/-44 K, 16 Cyg A: 5839+/-42 K, 16 Cyg B: 5809+/-39 K), and masses ({\theta} Cyg: 1.37+/-0.04 Msun, 16 Cyg A: 1.07+/-0.05 Msun, 16 Cyg B: 1.05+/-0.04 Msun) for each star with very little model dependence. The measurements presented here will provide strong constraints for future stellar modelling efforts.Comment: 9 pages, 4 figures, and 5 tables, accepted for publication in Monthly Notices of the Royal Astronomical Societ
    corecore