2,513 research outputs found

    Processes and priorities in planning mathematics teaching

    Full text link
    Insights into teachers' planning of mathematics reported here were gathered as part of a broader project examining aspects of the implementation of the Australian curriculum in mathematics (and English). In particular, the responses of primary and secondary teachers to a survey of various aspects of decisions that inform their use of curriculum documents and assessment processes to plan their teaching are discussed. Teachers appear to have a clear idea of the overall topic as the focus of their planning, but they are less clear when asked to articulate the important ideas in that topic. While there is considerable diversity in the processes that teachers use for planning and in the ways that assessment information informs that planning, a consistent theme was that teachers make active decisions at all stages in the planning process. Teachers use a variety of assessment data in various ways, but these are not typically data extracted from external assessments. This research has important implications for those responsible for supporting teachers in the transition to the Australian Curriculum: Mathematic

    Whole genome analysis of linezolid resistance in Streptococcus pneumoniae reveals resistance and compensatory mutations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several mutations were present in the genome of <it>Streptococcus pneumoniae </it>linezolid-resistant strains but the role of several of these mutations had not been experimentally tested. To analyze the role of these mutations, we reconstituted resistance by serial whole genome transformation of a novel resistant isolate into two strains with sensitive background. We sequenced the parent mutant and two independent transformants exhibiting similar minimum inhibitory concentration to linezolid.</p> <p>Results</p> <p>Comparative genomic analyses revealed that transformants acquired G2576T transversions in every gene copy of 23S rRNA and that the number of altered copies correlated with the level of linezolid resistance and cross-resistance to florfenicol and chloramphenicol. One of the transformants also acquired a mutation present in the parent mutant leading to the overexpression of an ABC transporter (spr1021). The acquisition of these mutations conferred a fitness cost however, which was further enhanced by the acquisition of a mutation in a RNA methyltransferase implicated in resistance. Interestingly, the fitness of the transformants could be restored in part by the acquisition of altered copies of the L3 and L16 ribosomal proteins and by mutations leading to the overexpression of the spr1887 ABC transporter that were present in the original linezolid-resistant mutant.</p> <p>Conclusions</p> <p>Our results demonstrate the usefulness of whole genome approaches at detecting major determinants of resistance as well as compensatory mutations that alleviate the fitness cost associated with resistance.</p

    Racial Disparity in Police Stop and Searches in England and Wales

    Get PDF
    Data published by the United Kingdom's Ministry for Justice clearly shows that, compared to persons who were White, members of racial minorities in England, particularly Blacks, were far more likely to be stopped and searched by the police. The question is whether such racial disparity in stops and searches could be justified by racial disparities in offending? Or whether the disparity in stop and searches exceeded the disparity in offending? This paper proposes a method for measuring the amount of excess in racial disparity in police stop and searches. Using the most recently published Ministry of Justice data (for 2007/08) for Police Areas in England and Wales it concludes that while in several Areas there was no excess to racial disparity in police stop and searches, there was, on the basis of the methodology proposed in the paper, evidence of such excess in some Police Areas of England and Wales

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Relative fat oxidation is higher in children than adults

    Get PDF
    Background: Prepubescent children may oxidize fatty acids more readily than adults. Therefore, dietary fat needs would be higher for children compared with adults. The dietary fat recommendations are higher for children 4 to 18 yrs (i.e., 25 to 35% of energy) compared with adults (i.e., 20 to 35% of energy). Despite this, many parents and children restrict dietary fat for health reasons. Methods: This study assessed whether rates of fat oxidation are similar between prepubescent children and adults. Ten children (8.7 ± 1.4 yr, 33 ± 13 kg mean ± SD) in Tanner stage 1 and 10 adults (41.6 ± 8 yr, 74 ± 13 kg) were fed a weight maintenance diet for three days to maintain body weight and to establish a consistent background for metabolic rate measurements (all foods provided). Metabolic rate was measured on three separate occasions before and immediately after breakfast and for 9 hrs using a hood system (twice) or a room calorimeter (once) where continuous metabolic measurements were taken. Results: During all three sessions whole body fat oxidation was higher in children (lower RQ) compared to adults (mean RQ= 0.84 ± .016 for children and 0.87 ± .02, for adults, p < 0.02). Although, total grams of fat oxidized was similar in children (62.7 ± 20 g/24 hrs) compared to adults (51.4 ± 19 g/24 hrs), the grams of fat oxidized relative to calorie expenditure was higher in children (0.047 ± .01 g/kcal, compared to adults (0.032 ± .01 p < 0.02). Females oxidized more fat relative to calorie expenditure than males of a similar age. A two way ANOVA showed no interaction between gender and age in terms of fax oxidation. Conclusion: These data suggest that fat oxidation relative to total calorie expenditure is higher in prepubescent children than in adults. Consistent with current dietary guidelines, a moderate fat diet is appropriate for children within the context of a diet that meets their energy and nutrient needs. Originally published Nutrition Journal, Vol. 6, No. 19, Aug 200
    • …
    corecore