324 research outputs found
Model for nucleation in GaAs homoepitaxy derived from first principles
The initial steps of MBE growth of GaAs on beta 2-reconstructed GaAs(001) are
investigated by performing total energy and electronic structure calculations
using density functional theory and a repeated slab model of the surface. We
study the interaction and clustering of adsorbed Ga atoms and the adsorption of
As_2 molecules onto Ga atom clusters adsorbed on the surface. The stable nuclei
consist of bound pairs of Ga adatoms, which originate either from dimerization
or from an indirect interaction mediated through the substrate reconstruction.
As_2 adsorption is found to be strongly exothermic on sites with a square array
of four Ga dangling bonds. Comparing two scenarios where the first As_2 gets
incorporated in the incomplete surface layer, or alternatively in a new added
layer, we find the first scenario to be preferable. In summary, the
calculations suggest that nucleation of a new atomic layer is most likely on
top of those surface regions where a partial filling of trenches in the surface
has occurred before.Comment: 8 pages, 14 figures, Submitted to Phys. Rev. B (December 15, 1998).
Other related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Eigenvector statistics in non-Hermitian random matrix ensembles
We study statistical properties of the eigenvectors of non-Hermitian random
matrices, concentrating on Ginibre's complex Gaussian ensemble, in which the
real and imaginary parts of each element of an N x N matrix, J, are independent
random variables. Calculating ensemble averages based on the quantity , where and are left and right eigenvectors of J, we show for large N that
eigenvectors associated with a pair of eigenvalues are highly correlated if the
two eigenvalues lie close in the complex plane. We examine consequences of
these correlations that are likely to be important in physical applications.Comment: 4 pages, no figure
Comparison of Real-time PCR to ELISA for the detection of human cytomegalovirus infection in renal transplant patients in the Sudan
<p>Abstract</p> <p>Background</p> <p>This study was carried out to detect human cytomegalovirus (HCMV) IgG and IgM antibodies using an Enzyme-linked immunosorbent assay (ELISA) in renal transplant patients in Khartoum state, Sudan and to improve the diagnosis of HCMV through the introduction of Real-time Polymerase Chain Reaction (PCR) testing. A total of 98 plasma samples were collected randomly from renal transplant patients at Ibin Sina Hospital and Salma Centre for Transplantation and Haemodialysis during the period from August to September 2006.</p> <p>Results</p> <p>Among the 98 renal transplant patients, 65 were males and 33 females. The results revealed that HCMV IgG was present in all patients' plasma 98/98 (100%), while only 6/98 (6.1%) had IgM antibodies in their plasma. HCMV DNA viral loads were detected in 32 patients 32/98 (32.7%) using Real-time PCR.</p> <p>Conclusions</p> <p>The HCMV IgG results indicate a high prevalence of past HCMV infection in all tested groups, while the finding of IgM may reflect a recent infection or reactivation. HCMV detection by real-time PCR in the present study indicated a high prevalence among renal transplant patients in Khartoum. In conclusion, the prevalence of HCMV in Khartoum State was documented through detection of HCMV-specific antibodies. Further study using various diagnostic methods should be considered to determine the prevalence of HCMV disease at the national level.</p
Recommended from our members
Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical Trial Design.
Accelerating cures for children with cancer remains an immediate challenge as a result of extensive oncogenic heterogeneity between and within histologies, distinct molecular mechanisms evolving between diagnosis and relapsed disease, and limited therapeutic options. To systematically prioritize and rationally test novel agents in preclinical murine models, researchers within the Pediatric Preclinical Testing Consortium are continuously developing patient-derived xenografts (PDXs)-many of which are refractory to current standard-of-care treatments-from high-risk childhood cancers. Here, we genomically characterize 261 PDX models from 37 unique pediatric cancers; demonstrate faithful recapitulation of histologies and subtypes; and refine our understanding of relapsed disease. In addition, we use expression signatures to classify tumors for TP53 and NF1 pathway inactivation. We anticipate that these data will serve as a resource for pediatric oncology drug development and will guide rational clinical trial design for children with cancer
The Interaction of Hypotaurine and Other Sulfinates with Reactive Oxygen and Nitrogen Species:A Survey of Reaction Mechanisms
Considerable strides have been made in understanding the oxidative mechanisms involved in the final steps of the cysteine pathway leading to taurine. The oxidation of sulfinates, hypotaurine and cysteine sulfinic acid, to the respective sulfonates, taurine and cysteic acid, has never been associated with any specific enzyme. Conversely, there is strong evidence that in vivo formation of taurine and cysteic acid is the result of sulfinate interaction with a variety of biologically relevant oxidants. In the last decade, many experiments have been performed to understand whether peroxynitrite, nitrogen dioxide and carbonate radical anion could be included in the biologically relevant reactive species capable of oxidizing sulfinates. Thanks to this work, it has been possible to highlight two possible reaction mechanisms (direct and indirect reaction) of sulfinates with reactive oxygen and nitrogen species.The sulfinates oxidation, mediated by peroxynitrite, is an example of both reaction mechanisms: through a two-electron-direct-reaction with peroxynitrite or through a one-electron-indirect-transfer reaction. In the indirect mechanism, the peroxynitrite homolysis releases hydroxyl and nitrogen dioxide radical and in addition the degradation of short-lived adduct formed by peroxynitrite and CO2 can generate carbonate radical anion. The reaction of hypotaurine and cysteine sulfinic acid with peroxynitrite-derived radicals is accompanied by extensive oxygen uptake with the generation of transient intermediates, which can begin a reaction by an oxygen-dependent mechanism with the sulfonates, taurine, and cysteic acid as final products. Due to pulse radiolysis studies, it has been shown that transient sulfonyl radicals (RSO2(•)) have been produced during the oxidation of both sulfinates by one-electron transfer reaction.The purpose is to analyze all the aspects of the reactive mechanism in the sulfinic group oxidation of hypotaurine and cysteine sulfinic acid through the results obtained from our laboratory in recent years
Differences in genotype and virulence among four multidrug-resistant <i>Streptococcus pneumoniae</i> isolates belonging to the PMEN1 clone
We report on the comparative genomics and characterization of the virulence phenotypes of four <i>S. pneumoniae</i> strains that belong to the multidrug resistant clone PMEN1 (Spain<sup>23F</sup> ST81). Strains SV35-T23 and SV36-T3 were recovered in 1996 from the nasopharynx of patients at an AIDS hospice in New York. Strain SV36-T3 expressed capsule type 3 which is unusual for this clone and represents the product of an in vivo capsular switch event. A third PMEN1 isolate - PN4595-T23 - was recovered in 1996 from the nasopharynx of a child attending day care in Portugal, and a fourth strain - ATCC700669 - was originally isolated from a patient with pneumococcal disease in Spain in 1984. We compared the genomes among four PMEN1 strains and 47 previously sequenced pneumococcal isolates for gene possession differences and allelic variations within core genes. In contrast to the 47 strains - representing a variety of clonal types - the four PMEN1 strains grouped closely together, demonstrating high genomic conservation within this lineage relative to the rest of the species. In the four PMEN1 strains allelic and gene possession differences were clustered into 18 genomic regions including the capsule, the blp bacteriocins, erythromycin resistance, the MM1-2008 prophage and multiple cell wall anchored proteins. In spite of their genomic similarity, the high resolution chinchilla model was able to detect variations in virulence properties of the PMEN1 strains highlighting how small genic or allelic variation can lead to significant changes in pathogenicity and making this set of strains ideal for the identification of novel virulence determinant
Singlet oxygen luminescence as an in vivo photodynamic therapy dose metric: validation in normal mouse skin with topical amino-levulinic acid
Although singlet oxygen (1O2) has long been proposed as the primary reactive oxygen species in photodynamic therapy (PDT), it has only recently been possible to detect it in biological systems by its luminescence at 1270 nm. Having previously demonstrated this in vitro and in vivo, we showed that cell survival was strongly correlated to the 1O2 luminescence in cell suspensions over a wide range of treatment parameters. Here, we extend this to test the hypothesis that the photobiological response in vivo is also correlated with 1O2 generation, independent of individual treatment parameters. The normal skin of SKH1-HR hairless mice was sensitised with 20% amino-levulinic acid-induced protoporophyrin IX and exposed to 5, 11, 22 or 50 J cm−2 of pulsed 523 nm light at 50 mW cm−2, or to 50 J cm−2 at 15 or 150 mW cm−2. 1O2 luminescence was measured during treatment and the photodynamic response of the skin was scored daily for 2 weeks after treatment. As observed by other authors, a strong irradiance dependence of the PDT effect was observed. However, in all cases the responses increased with the 1O2 luminescence, independent of the irradiance, demonstrating for the first time in vivo an unequivocal mechanistic link between 1O2 generation and photobiological response
- …