658 research outputs found

    The Light Stop Scenario from Gauge Mediation

    Full text link
    In this paper we embed the light stop scenario, a MSSM framework which explains the baryon asymmetry of the universe through a strong first order electroweak phase transition, in a top-down approach. The required low energy spectrum consists in the light SM-like Higgs, the right-handed stop, the gauginos and the Higgsinos while the remaining scalars are heavy. This spectrum is naturally driven by renormalization group evolution starting from a heavy scalar spectrum at high energies. The latter is obtained through a supersymmetry-breaking mix of gauge mediation, which provides the scalars masses by new gauge interactions, and gravity mediation, which generates gaugino and Higgsino masses. This supersymmetry breaking also explains the \mu\ and B_\mu\ parameters necessary for electroweak breaking and predicts small tri-linear mixing terms A_t in agreement with electroweak baryogenesis requirements. The minimal embedding predicts a Higgs mass around its experimental lower bound and by a small extension higher masses m_H\lesssim 127 GeV can be accommodated.Comment: 20 pages, 3 figures; v2: changes in the conventions; v3: more details on the Higgs mass prediction, version published in JHE

    Diagnosing Spin at the LHC via Vector Boson Fusion

    Get PDF
    We propose a new technique for determining the spin of new massive particles that might be discovered at the Large Hadron Collider. The method relies on pair-production of the new particles in a kinematic regime where the vector boson fusion production mechanism is enhanced. For this regime, we show that the distribution of the leading jets as a function of their relative azimuthal angle can be used to distinguish spin-0 from spin-1/2 particles. We illustrate this effect by considering the particular cases of (i) strongly-interacting, stable particles and (ii) supersymmetric particles carrying color charge. We argue that this method should be applicable in a wide range of new physics scenarios.Comment: 5 pages, 4 figure

    MSSM Baryogenesis and Electric Dipole Moments: An Update on the Phenomenology

    Get PDF
    We explore the implications of electroweak baryogenesis for future searches for permanent electric dipole moments in the context of the minimal supersymmetric extension of the Standard Model (MSSM). From a cosmological standpoint, we point out that regions of parameter space that over-produce relic lightest supersymmetric particles can be salvaged only by assuming a dilution of the particle relic density that makes it compatible with the dark matter density: this dilution must occur after dark matter freeze-out, which ordinarily takes place after electroweak baryogenesis, implying the same degree of dilution for the generated baryon number density as well. We expand on previous studies on the viable MSSM regions for baryogenesis, exploring for the first time an orthogonal slice of the relevant parameter space, namely the (tan\beta, m_A) plane, and the case of non-universal relative gaugino-higgsino CP violating phases. The main result of our study is that in all cases lower limits on the size of the electric dipole moments exist, and are typically on the same order, or above, the expected sensitivity of the next generation of experimental searches, implying that MSSM electroweak baryogenesis will be soon conclusively tested.Comment: 23 pages, 10 figures, matches version published in JHE

    Measuring Invisible Particle Masses Using a Single Short Decay Chain

    Full text link
    We consider the mass measurement at hadron colliders for a decay chain of two steps, which ends with a missing particle. Such a topology appears as a subprocess of signal events of many new physics models which contain a dark matter candidate. From the two visible particles coming from the decay chain, only one invariant mass combination can be formed and hence it is na\"ively expected that the masses of the three invisible particles in the decay chain cannot be determined from a single end point of the invariant mass distribution. We show that the event distribution in the log(E1T/E2T)\log(E_{1T}/E_{2T}) vs. invariant mass-squared plane, where E1TE_{1T}, E2TE_{2T} are the transverse energies of the two visible particles, contains the information of all three invisible particle masses and allows them to be extracted individually. The experimental smearing and combinatorial issues pose challenges to the mass measurements. However, in many cases the three invisible particle masses in the decay chain can be determined with reasonable accuracies.Comment: 45 pages, 32 figure

    The global distribution and burden of dengue.

    Get PDF
    Dengue is a systemic viral infection transmitted between humans by Aedes mosquitoes. For some patients, dengue is a life-threatening illness. There are currently no licensed vaccines or specific therapeutics, and substantial vector control efforts have not stopped its rapid emergence and global spread. The contemporary worldwide distribution of the risk of dengue virus infection and its public health burden are poorly known. Here we undertake an exhaustive assembly of known records of dengue occurrence worldwide, and use a formal modelling framework to map the global distribution of dengue risk. We then pair the resulting risk map with detailed longitudinal information from dengue cohort studies and population surfaces to infer the public health burden of dengue in 2010. We predict dengue to be ubiquitous throughout the tropics, with local spatial variations in risk influenced strongly by rainfall, temperature and the degree of urbanization. Using cartographic approaches, we estimate there to be 390 million (95% credible interval 284-528) dengue infections per year, of which 96 million (67-136) manifest apparently (any level of disease severity). This infection total is more than three times the dengue burden estimate of the World Health Organization. Stratification of our estimates by country allows comparison with national dengue reporting, after taking into account the probability of an apparent infection being formally reported. The most notable differences are discussed. These new risk maps and infection estimates provide novel insights into the global, regional and national public health burden imposed by dengue. We anticipate that they will provide a starting point for a wider discussion about the global impact of this disease and will help to guide improvements in disease control strategies using vaccine, drug and vector control methods, and in their economic evaluation

    Total body topical 5-fluorouracil for extensive non-melanoma skin cancer

    Get PDF
    Background Topical 5-fluorouracil 5% cream is one of the treatment modalities for non-melanoma skin cancer (NMSC). There is a lack of suitable therapies to treat patients with extensive NMSC. In this paper we report two patients with extensive NMSC treated by total body application of topical 5-fluorouracil 5% cream. Observations Topical 5-fluorouracil 5% cream was applied twice daily to the total body, including normal appearing skin. During the treatment, weekly blood samples were taken for measurement of 5-fluorouracil levels. All samples showed a 5-fluorouracil level less than the detection level of 10 mu g/l. Total body 5-fluorouracil 5% cream was shown to be an effective treatment in our patients; the majority of lesions cleared in both patients. Conclusions In conclusion, total body topical 5-fluorouracil 5% cream application was successful in two patients with extensive NMSC. No detectable serum level of 5-fluorouracil could be determined. Pain and secondary infections were important side effects in our patients. However, in patients with extensive NMSC this treatment may be considered

    A Stealth Supersymmetry Sampler

    Get PDF
    The LHC has strongly constrained models of supersymmetry with traditional missing energy signatures. We present a variety of models that realize the concept of Stealth Supersymmetry, i.e. models with R-parity in which one or more nearly-supersymmetric particles (a "stealth sector") lead to collider signatures with only a small amount of missing energy. The simplest realization involves low-scale supersymmetry breaking, with an R-odd particle decaying to its superpartner and a soft gravitino. We clarify the stealth mechanism and its differences from compressed supersymmetry and explain the requirements for stealth models with high-scale supersymmetry breaking, in which the soft invisible particle is not a gravitino. We also discuss new and distinctive classes of stealth models that couple through a baryon portal or Z' gauge interactions. Finally, we present updated limits on stealth supersymmetry in light of current LHC searches.Comment: 45 pages, 16 figure

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure

    A ‘quiet revolution’? The impact of Training Schools on initial teacher training partnerships

    Get PDF
    This paper discusses the impact on initial teacher training of a new policy initiative in England: the introduction of Training Schools. First, the Training School project is set in context by exploring the evolution of a partnership approach to initial teacher training in England. Ways in which Training Schools represent a break with established practice are considered together with their implications for the dominant mode of partnership led by higher education institutions (HEIs). The capacity of Training Schools to achieve their own policy objectives is examined, especially their efficacy as a strategy for managing innovation and the dissemination of innovation. The paper ends by focusing on a particular Training School project which has adopted an unusual approach to its work and enquires whether this alternative approach could offer a more profitable way forward. During the course of the paper, five different models of partnership are considered: collaborative, complementary, HEI-led, school-led and partnership within a partnership

    MSSM Electroweak Baryogenesis and LHC Data

    Get PDF
    Electroweak baryogenesis is an attractive scenario for the generation of the baryon asymmetry of the universe as its realization depends on the presence at the weak scale of new particles which may be searched for at high energy colliders. In the MSSM it may only be realized in the presence of light stops, and with moderate or small mixing between the left- and right-handed components. Consistency with the observed Higgs mass around 125 GeV demands the heavier stop mass to be much larger than the weak scale. Moreover the lighter stop leads to an increase of the gluon-gluon fusion Higgs production cross section which seems to be in contradiction with indications from current LHC data. We show that this tension may be considerably relaxed in the presence of a light neutralino with a mass lower than about 60 GeV, satisfying all present experimental constraints. In such a case the Higgs may have a significant invisible decay width and the stop decays through a three or four body decay channel, including a bottom quark and the lightest neutralino in the final state. All these properties make this scenario testable at a high luminosity LHC.Comment: 28 pages, 18 figures; v2) Discussion on point C removed for conciseness, minor changes in the text to match the published versio
    corecore