30 research outputs found

    An ecological approach to problems of Dark Energy, Dark Matter, MOND and Neutrinos

    Full text link
    Modern astronomical data on galaxy and cosmological scales have revealed powerfully the existence of certain dark sectors of fundamental physics, i.e., existence of particles and fields outside the standard models and inaccessible by current experiments. Various approaches are taken to modify/extend the standard models. Generic theories introduce multiple de-coupled fields A, B, C, each responsible for the effects of DM (cold supersymmetric particles), DE (Dark Energy) effect, and MG (Modified Gravity) effect respectively. Some theories use adopt vanilla combinations like AB, BC, or CA, and assume A, B, C belong to decoupled sectors of physics. MOND-like MG and Cold DM are often taken as opposite frameworks, e.g. in the debate around the Bullet Cluster. Here we argue that these ad hoc divisions of sectors miss important clues from the data. The data actually suggest that the physics of all dark sectors is likely linked together by a self-interacting oscillating field, which governs a chameleon-like dark fluid, appearing as DM, DE and MG in different settings. It is timely to consider an interdisciplinary approach across all semantic boundaries of dark sectors, treating the dark stress as one identity, hence accounts for several "coincidences" naturally.Comment: 12p, Proceedings to the 6-th Int. Conf. of Gravitation and Cosmology. Neutrino section expande

    The Cosmic Microwave Background and Particle Physics

    Get PDF
    In forthcoming years, connections between cosmology and particle physics will be made increasingly important with the advent of a new generation of cosmic microwave background (CMB) experiments. Here, we review a number of these links. Our primary focus is on new CMB tests of inflation. We explain how the inflationary predictions for the geometry of the Universe and primordial density perturbations will be tested by CMB temperature fluctuations, and how the gravitational waves predicted by inflation can be pursued with the CMB polarization. The CMB signatures of topological defects and primordial magnetic fields from cosmological phase transitions are also discussed. Furthermore, we review current and future CMB constraints on various types of dark matter (e.g. massive neutrinos, weakly interacting massive particles, axions, vacuum energy), decaying particles, the baryon asymmetry of the Universe, ultra-high-energy cosmic rays, exotic cosmological topologies, and other new physics.Comment: 43 pages. To appear in Annual Reviews of Nuclear and Particle Scienc

    Ruling Out Bosonic Repulsive Dark Matter in Thermal Equilibrium

    Full text link
    Self-interacting dark matter (SIDM), especially bosonic, has been considered a promising candidate to replace cold dark matter (CDM) as it resolves some of the problems associated with CDM. Here, we rule out the possibility that dark matter is a repulsive boson in thermal equilibrium. We develop the model first proposed by Goodman (2000) and derive the equation of state at finite temperature. Isothermal spherical halo models indicate a Bose-Einstein condensed core surrounded by a non-degenerate envelope, with an abrupt density drop marking the boundary between the two phases. Comparing this feature with observed rotation curves constrains the interaction strength of our model's DM particle, and Bullet Cluster measurements constrain the scattering cross section. Both ultimately can be cast as constraints on the particle's mass. We find these two constraints cannot be satisfied simultaneously in any realistic halo model---and hence dark matter cannot be a repulsive boson in thermal equilibrium. It is still left open that DM may be a repulsive boson provided it is not in thermal equilibrium; this requires that the mass of the particle be significantly less than a millivolt.Comment: 13 pages, 3 figures, 1 table, accepted MNRAS August 9 201

    Dark Energy vs. Modified Gravity

    Full text link
    Understanding the reason for the observed accelerated expansion of the Universe represents one of the fundamental open questions in physics. In cosmology, a classification has emerged among physical models for the acceleration, distinguishing between Dark Energy and Modified Gravity. In this review, we give a brief overview of models in both categories as well as their phenomenology and characteristic observable signatures in cosmology. We also introduce a rigorous distinction between Dark Energy and Modified Gravity based on the strong and weak equivalence principles.Comment: 29 pages, 4 figures; invited review submitted to Annual Reviews of Nuclear and Particle Science; v2: some pertinent references added; v3: table with constraints added, reflects published version; v4 [trivial]: fixed missing references in arxiv versio

    Gravity, Curvature and Energy: Gravitational Field Intentionality to the Cohesion and Union of the Universe

    Get PDF
    We use the quantum operators O c G , which are diffeomorphisms of gravity creating the intentionality under the action integrals to prove and determine the gluing intention for adherence of the matter-energy (taking the corresponding mass-energy tensor T ab ) to create complex bodies in the scale of conforming the fragmented Universe such as we know. The reverse is the planting of the energy model of gravity in accordance with the implications in space-time due to the diffeomorphisms of gravity, which were designed to explain the existence of the intention as kernel of the integral operators of the actions with this intention as direction of the energy-matter. The time, in particular, can be shown through instantons of a gauge field (this as electromagnetic field, and in this case appears the torsion) of gravity, which appears in natural way as the same integral operators obtained. Finally, using the complex Riemannian structure of our model of the space-time, and the K-invariant G-structure of the orbits used to obtain curvature, are obtained as consequences of the diffeomorphisms, the field equations to the energy-matter tensor density in each case of the gravitational field
    corecore