107 research outputs found

    Case-control vaccine effectiveness studies: Data collection, analysis and reporting results

    Get PDF
    The case-control methodology is frequently used to evaluate vaccine effectiveness post-licensure. The results of such studies provide important insight into the level of protection afforded by vaccines in a \u27real world\u27 context, and are commonly used to guide vaccine policy decisions. However, the potential for bias and confounding are important limitations to this method, and the results of a poorly conducted or incorrectly interpreted case-control study can mislead policies. In 2012, a group of experts met to review recent experience with case-control studies evaluating vaccine effectiveness; we summarize the recommendations of that group regarding best practices for data collection, analysis, and presentation of the results of case-control vaccine effectiveness studies. Vaccination status is the primary exposure of interest, but can be challenging to assess accurately and with minimal bias. Investigators should understand factors associated with vaccination as well as the availability of documented vaccination status in the study context; case-control studies may not be a valid method for evaluating vaccine effectiveness in settings where many children lack a documented immunization history. To avoid bias, it is essential to use the same methods and effort gathering vaccination data from cases and controls. Variables that may confound the association between illness and vaccination are also important to capture as completely as possible, and where relevant, adjust for in the analysis according to the analytic plan. In presenting results from case-control vaccine effectiveness studies, investigators should describe enrollment among eligible cases and controls as well as the proportion with no documented vaccine history. Emphasis should be placed on confidence intervals, rather than point estimates, of vaccine effectiveness. Case-control studies are a useful approach for evaluating vaccine effectiveness; however careful attention must be paid to the collection, analysis and presentation of the data in order to best inform evidence-based vaccine policies

    Case-control vaccine effectiveness studies: Preparation, design, and enrollment of cases and control

    Get PDF
    Case-control studies are commonly used to evaluate effectiveness of licensed vaccines after deployment in public health programs. Such studies can provide policy-relevant data on vaccine performance under \u27real world\u27 conditions, contributing to the evidence base to support and sustain introduction of new vaccines. However, case-control studies do not measure the impact of vaccine introduction on disease at a population level, and are subject to bias and confounding, which may lead to inaccurate results that can misinform policy decisions. In 2012, a group of experts met to review recent experience with case-control studies evaluating the effectiveness of several vaccines; here we summarize the recommendations of that group regarding best practices for planning, design and enrollment of cases and controls. Rigorous planning and preparation should focus on understanding the study context including healthcare-seeking and vaccination practices. Case-control vaccine effectiveness studies are best carried out soon after vaccine introduction because high coverage creates strong potential for confounding. Endpoints specific to the vaccine target are preferable to non-specific clinical syndromes since the proportion of non-specific outcomes preventable through vaccination may vary over time and place, leading to potentially confusing results. Controls should be representative of the source population from which cases arise, and are generally recruited from the community or health facilities where cases are enrolled. Matching of controls to cases for potential confounding factors is commonly used, although should be reserved for a limited number of key variables believed to be linked to both vaccination and disease. Case-control vaccine effectiveness studies can provide information useful to guide policy decisions and vaccine development, however rigorous preparation and design is essential

    Submesoscale processes at shallow salinity fronts in the Bay of Bengal : observations during the winter monsoon

    Get PDF
    Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 479-509, doi:10.1175/JPO-D-16-0283.1.Lateral submesoscale processes and their influence on vertical stratification at shallow salinity fronts in the central Bay of Bengal during the winter monsoon are explored using high-resolution data from a cruise in November 2013. The observations are from a radiator survey centered at a salinity-controlled density front, embedded in a zone of moderate mesoscale strain (0.15 times the Coriolis parameter) and forced by winds with a downfront orientation. Below a thin mixed layer, often ≤10 m, the analysis shows several dynamical signatures indicative of submesoscale processes: (i) negative Ertel potential vorticity (PV); (ii) low-PV anomalies with O(1–10) km lateral extent, where the vorticity estimated on isopycnals and the isopycnal thickness are tightly coupled, varying in lockstep to yield low PV; (iii) flow conditions susceptible to forced symmetric instability (FSI) or bearing the imprint of earlier FSI events; (iv) negative lateral gradients in the absolute momentum field (inertial instability); and (v) strong contribution from differential sheared advection at O(1) km scales to the growth rate of the depth-averaged stratification. The findings here show one-dimensional vertical processes alone cannot explain the vertical stratification and its lateral variability over O(1–10) km scales at the radiator survey.S. Ramachandran acknowledges support from the National Science Foundation through award OCE 1558849 and the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17- 1-2355. A. Tandon acknowledges support from the U.S. Office of Naval Research, Grants N00014-13-1-0456 and N00014-17-1-2355. J. T. Farrar and R. A. Weller were supported by the U.S. Office of Naval Research, Grant N00014-13-1-0453, to collect the UCTD data and process theUCTD and shipboard meteorological data. J. Nash, J. Mackinnon, and A. F. Waterhouse acknowledge support from the U. S. Office of Naval Research, Grants N00014-13-1-0503 and N00014-14-1-0455. E. Shroyer acknowledges support from the U. S. Office of Naval Research, Grants N00014-14-10236 and N00014-15- 12634. A. Mahadevan acknowledges support fromthe U. S. Office of Naval Research, Grant N00014-13-10451. A. J. Lucas and R. Pinkel acknowledge support from the U. S. Office of Naval Research, Grant N00014-13-1-0489.2018-08-2

    Epidemiology and risk factors for pneumonia severity and mortality in Bangladeshi children <5 years of age before 10-valent pneumococcal conjugate vaccine introduction

    Get PDF
    Abstract Background Pneumonia is the leading infectious cause of morbidity and mortality in young children in Bangladesh. We present the epidemiology of pneumonia in Bangladeshi children <5 years before 10-valent pneumococcal conjugate vaccine introduction and investigate factors associated with disease severity and mortality. Methods Children aged 2–59 months admitted to three Bangladeshi hospitals with pneumonia (i.e., cough or difficulty breathing and age-specific tachypnea without danger signs) or severe pneumonia (i.e., cough or difficulty breathing and ≥1 danger signs) were included. Demographic, clinical, laboratory, and vaccine history data were collected. We assessed associations between characteristics and pneumonia severity and mortality using multivariable logistic regression. Results Among 3639 Bangladeshi children with pneumonia, 61% had severe disease, and 2% died. Factors independently associated with severe pneumonia included ages 2–5 months (adjusted odds ratio [aOR] 1.60 [95% CI: 1.26–2.01]) and 6–11 months (aOR 1.31 [1.10–1.56]) relative to 12–59 months, low weight for age (aOR 1.22 [1.04–1.42]), unsafe drinking water source (aOR 2.00 [1.50–2.69]), higher paternal education (aOR 1.34 [1.15–1.57]), higher maternal education (aOR 0.74 [0.64–0.87]), and being fully vaccinated for age with pentavalent vaccination (aOR 0.64 [0.51–0.82]). Increased risk of pneumonia mortality was associated with age <12 months, low weight for age, unsafe drinking water source, lower paternal education, disease severity, and having ≥1 co-morbid condition. Conclusions Modifiable factors for severe pneumonia and mortality included low weight for age and access to safe drinking water. Improving vaccination status could decrease disease severity

    Improving interprofessional practice and cultural competence with interprofessional education

    Get PDF
    Challenge/Issue: Interprofessional education (IPE) and cultural competence (CC) training have become a staple in healthcare education programs with the ultimate goal of improving patient care. IPE, where students from two or more professions learn from, about, and with each other to optimize care, resulting in great team building, sharing of knowledge, communication, and collaboration. CC involves an individual’s ability to recognize, assess, appreciate, and respect unique backgrounds such as race, ethnicity, sexual minorities, gender, identity, religion, and age, to make greater informed decisions in healthcare and minimize inequities. Within educational programs, both constructs can occur simultaneously to optimize learning and patient-centered outcomes.Objective: To identify the impact of a Diversity, Equity, and Inclusion IPE single-day event on the perceptions of interprofessional practice and ability to provide culturally competent care instudents enrolled in Doctor of Osteopathy (DO), Pharmacy, and Athletic Training (AT) education programs.Approach: An experimental design used pre- and post-test measures of IPE and CC knowledge with a one day conference as the intervention. Participants included students (205- pre and 200- post) enrolled in DO, pharmacy, and AT programs at two Midwestern universities. Participants completed the Interprofessional Collaborative Competences Attainments Survey (ICCAS) and three modified components of the Tool for Assessing Cultural Competence Training (mTACCT) before and after the event that included baseline information about the different professions, three CC presentations, and two case studies with small group discussions. Due to uneven sample sizes in the pre- and post-test, and violations of normality and homogeneity of variance, Kruskal Wallis tests were used to assess differences in the intervention.Results: Five items on the ICCAS and all items on the mTACCT demonstrated statistical significance. On the ICCAS, students demonstrated increases in their ability to; “actively list to Interprofessional (IP) team members’ ideas and concerns”, “working effectively with IP members to enhance care", “recognizing how others’ skills and knowledge complement and overlap with their own”, “to develop an effective care plan with IP team members”, and “negotiate responsibilities with overlapping scopes of practice”. This demonstrated that discussing the professions in general and utilizing case studies and small group discussions allowed students to understand the roles, skills, and responsibilities of their peer professionals which will lead to better communication and teamwork resulting in improved patient outcomes and satisfaction for both patients and staff. The results of the mTACCT demonstrated overall improvement in skills but highlighted students are consciously incompetent, where they recognize a deficiency but demonstrate a desire for greater understanding. Students felt that initially they lacked the ability to identify bias and stereotyping in healthcare but after the intervention felt better equipped. It is important to note that while we found improvements within CC, a single event should not be the only point of CC inclusion within curriculums. Our intervention provided students from three different healthcare programs with an educational opportunity to strengthen their skills in both IPE and C

    Setting priorities in health care organizations: criteria, processes, and parameters of success

    Get PDF
    BACKGROUND: Hospitals and regional health authorities must set priorities in the face of resource constraints. Decision-makers seek practical ways to set priorities fairly in strategic planning, but find limited guidance from the literature. Very little has been reported from the perspective of Board members and senior managers about what criteria, processes and parameters of success they would use to set priorities fairly. DISCUSSION: We facilitated workshops for board members and senior leadership at three health care organizations to assist them in developing a strategy for fair priority setting. Workshop participants identified 8 priority setting criteria, 10 key priority setting process elements, and 6 parameters of success that they would use to set priorities in their organizations. Decision-makers in other organizations can draw lessons from these findings to enhance the fairness of their priority setting decision-making. SUMMARY: Lessons learned in three workshops fill an important gap in the literature about what criteria, processes, and parameters of success Board members and senior managers would use to set priorities fairly

    Patient engagement in designing, conducting, and disseminating clinical pain research : IMMPACT recommended considerations

    Get PDF
    The consensus recommendations are based on the views of IMMPACT meeting participants and do not necessarily represent the views of the organizations with which the authors are affiliated. The following individuals made important contributions to the IMMPACT meeting but were not able to participate in the preparation of this article: David Atkins, MD (Department of Veterans Affairs), Rebecca Baker, PhD (National Institutes of Health), Allan Basbaum, PhD (University of California San Francisco), Robyn Bent, RN, MS (Food and Drug Administration), Nathalie Bere, MPH (European Medicines Agency), Alysha Croker, PhD (Health Canada), Stephen Bruehl, PhD (Vanderbilt University), Michael Cobas Meyer, MD, MBS (Eli Lilly), Scott Evans, PhD (George Washington University), Gail Graham (University of Maryland), Jennifer Haythornthwaite, PhD (Johns Hopkins University), Sharon Hertz, MD (Hertz and Fields Consulting), Jonathan Jackson, PhD (Harvard Medical School), Mark Jensen, PhD (University of Washington), Francis Keefe, PhD (Duke University), Karim Khan, MD, PhD, MBA (Canadian Institutes of Health Research), Lynn Laidlaw (University of Aberdeen), Steven Lane (Patient-Centered Outcomes Research Institute), Karen Morales, BS (University of Maryland), David Leventhal, MBA (Pfizer), Jeremy Taylor, OBE (National Institute for Health Research), and Lena Sun, MD (Columbia University). The manuscript has not been submitted, presented, or published elsewhere. Parts of the manuscript have been presented in a topical workshop at IASP World Congress on Pain in Toronto, in 2022.Peer reviewedPublisher PD
    corecore