3,733 research outputs found
Detecting Gluino-Containing Hadrons
When SUSY breaking produces only dimension-2 operators, gluino and photino
masses are of order 1 GeV or less. The gluon-gluino bound state has mass
1.3-2.2 GeV and lifetime > 10^{-5} - 10^{-10} s. This range of mass and
lifetime is largely unconstrained because missing energy and beam dump
techniques are ineffective. With only small modifications, upcoming K^0 decay
experiments can study most of the interesting range. The lightest
gluino-containing baryon (uds-gluino) is long-lived or stable; experiments to
find it and the uud-gluino are also discussed.Comment: 13 pp, 1 figure (uuencoded). Descendant of hep-ph/9504295,
hep-ph/9508291, and hep-ph/9508292, focused on experimental search
techniques. To be published in Phys Rev Let
On the Detection and Quantification of Nonlinearity via Statistics of the Gradients of a Black-Box Model
Detection and identification of nonlinearity is a task of high importance for
structural dynamics. Detecting nonlinearity in a structure, which has been
designed to operate in its linear region, might indicate the existence of
damage. Therefore, it is important, even for safety reasons, to detect when a
structure exhibits nonlinear behaviour. In the current work, a method to detect
nonlinearity is proposed, based on the distribution of the gradients of a
data-driven model, which is fitted on data acquired from the structure of
interest. The data-driven model herein is a neural network. The selection of
such a type of model was done in order to not allow the user to decide how
linear or nonlinear the model shall be, but to let the training algorithm of
the neural network shape the level of nonlinearity according to the training
data. The neural network is trained to predict the accelerations of the
structure for a time-instant using as inputs accelerations of previous
time-instants, i.e. one-step-ahead predictions. Afterwards, the gradients of
the output of the neural network with respect to its inputs are calculated.
Given that the structure is linear, the distribution of the aforementioned
gradients should be quite peaked, while in the case of a structure with
nonlinearities, the distribution of the gradients shall be more spread and,
potentially, multimodal. To test the above assumption, data from an
experimental structure are considered. The structure is tested under different
scenarios, some of which are linear and some nonlinear. The statistics of the
distributions of the gradients for the different scenarios can be used to
identify cases where nonlinearity is present. Moreover, via the proposed method
one is able to quantify the nonlinearity by observing higher values of standard
deviation of the distribution of the gradients for "more nonlinear" scenarios
Experiments to Find or Exclude a Long-Lived, Light Gluino
Gluinos in the mass range ~1 1/2 - 3 1/2 GeV are absolutely excluded. Lighter
gluinos are allowed, except for certain ranges of lifetime. Only small parts of
the mass-lifetime parameter space are excluded for larger masses unless the
lifetime is shorter than ~ 2 10^{-11} (m_{gluino}/ GeV) sec. Refined mass and
lifetime estimates for R-hadrons are given, present direct and indirect
experimental constraints are reviewed, and experiments to find or definitively
exclude these possibilities are suggested.Comment: 27 pp, latex with 1 uufiled figure, RU-94-35. New version amplifies
discussion of some points and corresponds to version for Phys. Rev.
Vibration effects on heat transfer in cryogenic systems Quarterly progress report no. 1, Jun. 1 - Aug. 31, 1966
Vibration effects on natural convection and fluid transport properties in cryogenic system
Recalculation of Proton Compton Scattering in Perturbative QCD
At very high energy and wide angles, Compton scattering on the proton (gamma
p -> gamma p) is described by perturbative QCD. The perturbative QCD
calculation has been performed several times previously, at leading twist and
at leading order in alpha_s, with mutually inconsistent results, even when the
same light-cone distribution amplitudes have been employed. We have
recalculated the helicity amplitudes for this process, using contour
deformations to evaluate the singular integrals over the light-cone momentum
fractions. We do not obtain complete agreement with any previous result. Our
results are closest to those of the most recent previous computation, differing
significantly for just one of the three independent helicity amplitudes, and
only for backward scattering angles. We present results for the unpolarized
cross section, and for three different polarization asymmetries. We compare the
perturbative QCD predictions for these observables with those of the handbag
and diquark models. In order to reduce uncertainties associated with alpha_s
and the three-quark wave function normalization, we have normalized the Compton
cross section using the proton elastic form factor. The theoretical predictions
for this ratio are about an order of magnitude below existing experimental
data.Comment: Latex, 23 pages, 13 figures. Checked numerical integration one more
way; added results for one more proton distribution amplitude; a few other
minor changes. Version to appear in Phys. Rev.
Interacting Dark Matter and Dark Energy
We discuss models for the cosmological dark sector in which the energy
density of a scalar field approximates Einstein's cosmological constant and the
scalar field value determines the dark matter particle mass by a Yukawa
coupling. A model with one dark matter family can be adjusted so the
observational constraints on the cosmological parameters are close to but
different from what is predicted by the Lambda CDM model. This may be a useful
aid to judging how tightly the cosmological parameters are constrained by the
new generation of cosmological tests that depend on the theory of structure
formation. In a model with two families of dark matter particles the scalar
field may be locked to near zero mass for one family. This can suppress the
long-range scalar force in the dark sector and eliminate evolution of the
effective cosmological constant and the mass of the nonrelativistic dark matter
particles, making the model close to Lambda CDM, until the particle number
density becomes low enough to allow the scalar field to evolve. This is a
useful example of the possibility for complexity in the dark sector.Comment: 15 pages, 6 figures; added a reference and a minor correctio
Wide-angle elastic scattering and color randomization
Baryon-baryon elastic scattering is considered in the independent scattering
(Landshoff) mechanism. It is suggested that for scattering at moderate
energies, direct and interchange quark channels contribute with equal color
coefficients because the quark color is randomized by soft gluon exchange
during the hadronization stage. With this assumption, it is shown that the
ratio of cross sections at CM angle
decreases from a high energy value of R_{\pbar p / pp} \approx 1/2.7, down to
R_{\pbar p / pp} \approx 1/28, compatible with experimental data at moderate
energies. This sizable fall in the ratio seems to be characteristic of the
Landshoff mechanism, in which changes at the quark level have a strong effect
precisely because the hadronic process occurs via multiple quark scatterings.
The effect of color randomization on the angular distribution of proton-proton
elastic scattering and the cross section ratio is also discussed.Comment: 18 pages, latex2e, 4 uuencoded figures, include
Correlation between Compact Radio Quasars and Ultra-High Energy Cosmic Rays
Some proposals to account for the highest energy cosmic rays predict that
they should point to their sources. We study the five highest energy events
(E>10^20 eV) and find they are all aligned with compact, radio-loud quasars.
The probability that these alignments are coincidental is 0.005, given the
accuracy of the position measurements and the rarity of such sources. The
source quasars have redshifts between 0.3 and 2.2. If the correlation pointed
out here is confirmed by further data, the primary must be a new hadron or one
produced by a novel mechanism.Comment: 8 pages, 3 tables, revtex. with some versions of latex it's necessary
to break out the tables and latex them separately using article.sty rather
than revtex.st
- …