41 research outputs found

    Applications of ultrasonic testing and machine learning methods to predict the static & fatigue behavior of spot-welded joints

    Get PDF
    © 2020 The Society of Manufacturing Engineers. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Ultrasonic Testing (UT) is one of the well-known Non-Destructive Techniques (NDT) of spot-weld inspection in the advanced industries, especially in automotive industry. However, the relationship between the UT results and strength of the spot-welded joints subjected to various loading conditions isunknown. The main purpose of this research is to present an integrated search system as a new approach for assessment of tensile strength and fatigue behavior of the spot-welded joints. To this end, Resistance Spot Weld (RSW) specimens of three-sheets were made of different types of low carbon steel. Afterward, the ultrasonic tests were carried out and the pulse-echo data of each sample were extracted utilizing Image Processing Technique (IPT). Several experiments (tensile and axial fatigue tests) were performed to study the mechanical properties of RSW joints of multiple sheets. The novel approach of the present research is to provide a new methodology for static strength and fatigue life assessment of three-sheets RSW joints based on the UT results by utilizing Artificial Neural Network (ANN) simulation. Next, Genetic Algorithm (GA) was used to optimize the structure of ANN. This approach helps to decrease the number of tests and the cost of performing destructive tests with appropriate reliability.Peer reviewe

    BAUSCHINGER EFFECT INVESTIGATION OF AN ALUMINUM ALLOY, AND ITS APPLICATION IN AUTOFRETTAGED AND COMPOUND TUBES

    Get PDF
    ABSTRACT For characterizing Bauschinger effect factor (BEF) and Bauschinger modulus reduction of an A5083 aluminum alloy experimentally, several uniaxial tension-compression tests carried out in different pre-strain levels using INSTRON testing machine. BEF was investigated using both Welter and Milligan's definitions for various offset values. It was observed that Milligan's definition predicts BEF less than Welter's definition for all offset values. In addition, real loadingunloading behavior of such alloy was recorded to predict residual stresses resulting from autofrettage and shrink fit processes. Variable material properties (VMP) method, which is capable of incorporating real unloading behavior of materials, was used as an accurate way to estimate residual stresses. Hoop residual stresses were calculated using real unloading behavior and isotropic hardening rule. Results showed that, isotropic hardening rule in comparison with real unloading behavior overestimates bore hoop residual stresses up to 12%. INTRODUCTION The Bauschinger effect reported in 1881 describes the lowering of the elastic limit in compression subsequent to a previous loading in tension beyond the elastic limi

    Effect of residual stress on failure of tube-to-tubesheet weld in heat exchangers

    Get PDF
    In a shell and tube heat exchanger, the failure of tube-to-tubesheet welds results in high-pressure water jet which erodes the refractory in front of the tubesheet. Finite element method was employed to simulate the welding process and post weld heat treatment (PWHT) to find the factors affecting the failure in tube-to-tubesheet weldments. Residual stresses in two different geometries of tube-to-tubesheet weldment were calculated through uncoupled thermal-structural analysis. The results showed that the values of residual stresses are higher in heat exchanger of site 1 than site 2 due to more weld passes and geometry of connection. Also, the maximum stress in site 1 occurs at the shellside face of tubesheet while it is on the weld toe in site 2. High tensile residual stresses, especially in Site 1, reduce the tubesheet life. Therefore, performing an efficient PWHT is vital. The PWHT simulation indicated that the process designed is effective for both sites by reducing the residual stress significantly. In addition, the effect of stress concentration was examined on both sites. Moreover, the stress concentration factor in site 1 is as twice as in site 2 and it is the main reason for more failures in site 1

    Pervasive sensing to model political opinions in face-to-face networks

    Get PDF
    Exposure and adoption of opinions in social networks are important questions in education, business, and government. We de- scribe a novel application of pervasive computing based on using mobile phone sensors to measure and model the face-to-face interactions and subsequent opinion changes amongst undergraduates, during the 2008 US presidential election campaign. We nd that self-reported political discussants have characteristic interaction patterns and can be predicted from sensor data. Mobile features can be used to estimate unique individ- ual exposure to di erent opinions, and help discover surprising patterns of dynamic homophily related to external political events, such as elec- tion debates and election day. To our knowledge, this is the rst time such dynamic homophily e ects have been measured. Automatically esti- mated exposure explains individual opinions on election day. Finally, we report statistically signi cant di erences in the daily activities of individ- uals that change political opinions versus those that do not, by modeling and discovering dominant activities using topic models. We nd people who decrease their interest in politics are routinely exposed (face-to-face) to friends with little or no interest in politics.U.S. Army Research Laboratory (Cooperative Agreement No. W911NF-09-2-0053)United States. Air Force Office of Scientific Research (Award No. FA9550-10-1-0122)Swiss National Science Foundatio

    Effect of contact geometry on fretting fatigue life of aluminium alloy 2024-T3

    No full text
    331-336The effect of contact geometry on fretting fatigue life was investigated by experiments and numerical simulation. The experiments were conducted for flat and cylindrical pads under the same contact normal force. The post-test examinations including crack growth measurements and fractography were carried out using optical and scanning electron microscopy (SEM). Numerical simulations of pad-specimen assembly with and without crack were performed using a finite element (FE) analysis. The experimental study revealed that the rate of crack growth was higher at the early stages of fretting fatigue for cylindrical pads. This stage corresponds to a higher KII for cylindrical contact model. After this stage, the effects of friction force and KII decrease and the effects of tensile stress and KI become more significant. The experimental results also showed that fatigue life of AA2024 reduced by nearly 75% under fretting fatigue condition. However, the reduction for cylindrical contact geometry was more than that measured for flat contact model. The numerical results indicated that the maximum shear, tensile, and Von-Mises stresses which are thought to be the origin for initiation and growth of crack, occur at the trailing edge of the contact surface for flat and cylindrical pads. SEM examination confirmed that the crack initiated from the points of stress maxima

    Introducing gradient severe shot peening as a novel mechanical surface treatment

    Get PDF
    Shot peening is widely used for improving mechanical properties especially fatigue behavior of metallic components by inducing surface hardening, compressive residual stresses and surface grain refinement. In air blast shot peening, projection pressure and surface coverage (an index of peening duration) have been considered as major controlling process parameters; the combination of these parameters plays a critical role in the beneficial effects of shot peening. Generally in severe shot peening aimed at obtaining surface grain refinement, constant values of pressure are considered with different peening durations. Considering very high peening duration, however, the phenomenon of over shot peening, which can be identified with the formation of surface defects could occur. The present study introduces a novel shot peening treatment, here called gradient severe shot peening (GSSP) that instead of using constant projection pressure, implements gradually increasing or decreasing pressures. The gradual increase of the projection pressure acts as a pre-hardening stage for the following higher projection pressure boosting the potential of the material to tolerate the sequential impacts and thus become less prone to the formation of surface defects. The results of the experiments indicate significant fatigue life improvement obtained for GSSP treated specimens compared to the standard treatment with constant pressure. GSSP avoids the detrimental effects of over-peening, while maintaining the beneficial effects of surface nano-crystallization, surface hardening and compressive residual stresses. The notable difference in fatigue strength enhancement for GSSP treated material can be also attributed to the modulated surface morphology with lower surface roughness compared to a standard shot peening treatment with the same exposure time

    Effects of Conventional and Severe Shot Peening on Residual Stress and Fatigue Strength of Steel AISI 1060 and Residual Stress Relaxation Due to Fatigue Loading: Experimental and Numerical Simulation

    Get PDF
    Abstract: This study investigates and compares the effects of different shot peening treatments including conventional and severe shot peening on microstructure, mechanical properties, fatigue behavior, and residual stress relaxation of AISI 1060 steel. Shot peening treatments were applied with two Almen intensities of 17 and 21 A and a wide ranges of coverage (100%–1500%). Various microstructural observations were carried out to analyze the evolution of microstructure. Microhardness, residual stress and surface roughness measurements and also axial fatigue test were performed. Moreover, the extent of the residual stress relaxation during cyclic loading was investigated by means of XRD measurements. Furthermore, numerical simulation of residual stress relaxation due to fatigue loading was carried out and validated against experimental investigations. The comparison indicated a good agreement for the surface residual stress relaxation up to 100 cycles. The experimental results indicated the efficiency of severe shot peening processes in obtaining nanostructured surface layer and achieving superior mechanical properties and fatigue behavior. Also, residual stress measurements revealed that stress relaxation started with a high rate at the initial stages of loading and gradually increased at higher number of cycles which was lower in the case of severely shot peened samples compared to the conventionally treated ones. Graphic Abstract: [Figure not available: see fulltext.

    A comprehensive experimental and numerical study on redistribution of residual stresses by shot peening

    No full text
    Shot peening is one of the most effective surface strengthening treatment technologies in which compressive residual stresses are induced beneath the specimen surface. Effects of various factors on the distribution of residual stress profile induced by shot peening have been investigated by many researchers. However, initial residual stresses are one of the important factors which affect the shot peening residual stress.This study is aimed to present comprehensive numerical and experimental study on the effect of initial residual stresses on the shot peened specimen. Initial residual stresses were induced using a four-point bending rig and grinding. Incremental center hole drilling (ICHD) technique was employed to measure residual stresses on bent, ground, shot peened, bent plus shot peened and ground plus shot peened specimens. Numerical analyses of these processes were performed to provide quantitative comparison of different combinations of residual stresses. The comparison with experimental results helped to have a better understanding on how shot peening residual stresses were redistributed. Furthermore, the surface hardness was measured for all specimens
    corecore