4,307 research outputs found
Simulation of solidification in a Bridgman cell
Bridgman-type crystal growth techniques are attractive methods for producing homogeneous, high-quality infrared detector and junction device materials. However, crystal imperfections and interface shapes still must be controlled through modification of the temperature and concentration gradients created during solidification. The objective of this investigation was to study the temperature fields generated by various cell and heatpipe configurations and operating conditions. Continuum's numerical model of the temperature, species concentrations, and velocity fields was used to describe the thermal characteristics of Bridgman cell operation
Decoupling Graphene from SiC(0001) via Oxidation
When epitaxial graphene layers are formed on SiC(0001), the first carbon
layer (known as the "buffer layer"), while relatively easy to synthesize, does
not have the desirable electrical properties of graphene. The conductivity is
poor due to a disruption of the graphene pi-bands by covalent bonding to the
SiC substrate. Here we show that it is possible to restore the graphene
pi-bands by inserting a thin oxide layer between the buffer layer and SiC
substrate using a low temperature, CMOS-compatible process that does not damage
the graphene layer
A power-law distribution of phase-locking intervals does not imply critical interaction
Neural synchronisation plays a critical role in information processing,
storage and transmission. Characterising the pattern of synchronisation is
therefore of great interest. It has recently been suggested that the brain
displays broadband criticality based on two measures of synchronisation - phase
locking intervals and global lability of synchronisation - showing power law
statistics at the critical threshold in a classical model of synchronisation.
In this paper, we provide evidence that, within the limits of the model
selection approach used to ascertain the presence of power law statistics, the
pooling of pairwise phase-locking intervals from a non-critically interacting
system can produce a distribution that is similarly assessed as being power
law. In contrast, the global lability of synchronisation measure is shown to
better discriminate critical from non critical interaction.Comment: (v3) Fixed error in Figure 1; (v2) Added references. Minor edits
throughout. Clarified relationship between theoretical critical coupling for
infinite size system and 'effective' critical coupling system for finite size
system. Improved presentation and discussion of results; results unchanged.
Revised Figure 1 to include error bars on r and N; results unchanged; (v1) 11
pages, 7 figure
A Multi Agent Model for the Limit Order Book Dynamics
In the present work we introduce a novel multi-agent model with the aim to
reproduce the dynamics of a double auction market at microscopic time scale
through a faithful simulation of the matching mechanics in the limit order
book. The agents follow a noise decision making process where their actions are
related to a stochastic variable, "the market sentiment", which we define as a
mixture of public and private information. The model, despite making just few
basic assumptions over the trading strategies of the agents, is able to
reproduce several empirical features of the high-frequency dynamics of the
market microstructure not only related to the price movements but also to the
deposition of the orders in the book.Comment: 20 pages, 11 figures, in press European Physical Journal B (EPJB
Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior
Despite the availability of very detailed data on financial market,
agent-based modeling is hindered by the lack of information about real trader
behavior. This makes it impossible to validate agent-based models, which are
thus reverse-engineering attempts. This work is a contribution to the building
of a set of stylized facts about the traders themselves. Using the client
database of Swissquote Bank SA, the largest on-line Swiss broker, we find
empirical relationships between turnover, account values and the number of
assets in which a trader is invested. A theory based on simple mean-variance
portfolio optimization that crucially includes variable transaction costs is
able to reproduce faithfully the observed behaviors. We finally argue that our
results bring into light the collective ability of a population to construct a
mean-variance portfolio that takes into account the structure of transaction
costsComment: 26 pages, 9 figures, Fig. 8 fixe
Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments
We have studied the evolution of superconducting and normal state properties
of neutron irradiated Mg(BC) wire segments as a function
of post exposure annealing time and temperature. The initial fluence fully
suppressed superconductivity and resulted in an anisotropic expansion of the
unit cell. Superconductivity was restored by post-exposure annealing. The upper
critical field, H(T=0), approximately scales with T starting with an
undamaged T near 37 K and H(T=0) near 32 T. Up to an annealing
temperature of 400 C the recovery of T tends to coincide with a
decrease in the normal state resistivity and a systematic recovery of the
lattice parameters. Above 400 C a decrease in order along the c- direction
coincides with an increase in resistivity, but no apparent change in the
evolution of T and H. To first order, it appears that carbon doping
and neutron damaging effect the superconducting properties of MgB
independently
Observational predictions for Thorne-\.Zytkow objects
Thorne-ytkow objects (TO) are potential end products of the merger
of a neutron star with a non-degenerate star. In this work, we have computed
the first grid of evolutionary models of TOs with the MESA stellar
evolution code. With these models, we predict several observational properties
of TOs, including their surface temperatures and luminosities, pulsation
periods, and nucleosynthetic products. We expand the range of possible TO
solutions to cover and
. Due to the much
higher densities our TOs reach compared to previous models, if TOs
form we expect them to be stable over a larger mass range than previously
predicted, without exhibiting a gap in their mass distribution. Using the GYRE
stellar pulsation code we show that TOs should have fundamental pulsation
periods of 1000--2000 days, and period ratios of 0.2--0.3. Models
computed with a large 399 isotope fully-coupled nuclear network show a
nucleosynthetic signal that is different to previously predicted. We propose a
new nucleosynthetic signal to determine a star's status as a TO: the
isotopologues and , which will
have a shift in their spectral features as compared to stable
titanium-containing molecules. We find that in the local Universe (~SMC
metallicities and above) TOs show little heavy metal enrichment,
potentially explaining the difficulty in finding TOs to-date.Comment: 17 pages, 16 figures, 3 Tables, Sumbitedd to MNRAS, Zenodo data
available https://doi.org/10.5281/zenodo.453442
Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature
Graphene is considered to be a promising candidate for future
nano-electronics due to its exceptional electronic properties. Unfortunately,
the graphene field-effect-transistors (FETs) cannot be turned off effectively
due to the absence of a bandgap, leading to an on/off current ratio typically
around 5 in top-gated graphene FETs. On the other hand, theoretical
investigations and optical measurements suggest that a bandgap up to a few
hundred meV can be created by the perpendicular E-field in bi-layer graphenes.
Although previous carrier transport measurements in bi-layer graphene
transistors did indicate a gate-induced insulating state at temperature below 1
Kelvin, the electrical (or transport) bandgap was estimated to be a few meV,
and the room temperature on/off current ratio in bi-layer graphene FETs remains
similar to those in single-layer graphene FETs. Here, for the first time, we
report an on/off current ratio of around 100 and 2000 at room temperature and
20 K, respectively in our dual-gate bi-layer graphene FETs. We also measured an
electrical bandgap of >130 and 80 meV at average electric displacements of 2.2
and 1.3 V/nm, respectively. This demonstration reveals the great potential of
bi-layer graphene in applications such as digital electronics,
pseudospintronics, terahertz technology, and infrared nanophotonics.Comment: 3 Figure
Criticality and finite size effects in a simple realistic model of stock market
We discuss a simple model based on the Minority Game which reproduces the
main stylized facts of anomalous fluctuations in finance. We present the
analytic solution of the model in the thermodynamic limit and show that
stylized facts arise only close to a line of critical points with non-trivial
properties. By a simple argument, we show that, in Minority Games, the
emergence of critical fluctuations close to the phase transition is governed by
the interplay between the signal to noise ratio and the system size. These
results provide a clear and consistent picture of financial markets as critical
systems.Comment: 4 pages, 4 figure
- …