4,307 research outputs found

    Simulation of solidification in a Bridgman cell

    Get PDF
    Bridgman-type crystal growth techniques are attractive methods for producing homogeneous, high-quality infrared detector and junction device materials. However, crystal imperfections and interface shapes still must be controlled through modification of the temperature and concentration gradients created during solidification. The objective of this investigation was to study the temperature fields generated by various cell and heatpipe configurations and operating conditions. Continuum's numerical model of the temperature, species concentrations, and velocity fields was used to describe the thermal characteristics of Bridgman cell operation

    Decoupling Graphene from SiC(0001) via Oxidation

    Full text link
    When epitaxial graphene layers are formed on SiC(0001), the first carbon layer (known as the "buffer layer"), while relatively easy to synthesize, does not have the desirable electrical properties of graphene. The conductivity is poor due to a disruption of the graphene pi-bands by covalent bonding to the SiC substrate. Here we show that it is possible to restore the graphene pi-bands by inserting a thin oxide layer between the buffer layer and SiC substrate using a low temperature, CMOS-compatible process that does not damage the graphene layer

    A power-law distribution of phase-locking intervals does not imply critical interaction

    Get PDF
    Neural synchronisation plays a critical role in information processing, storage and transmission. Characterising the pattern of synchronisation is therefore of great interest. It has recently been suggested that the brain displays broadband criticality based on two measures of synchronisation - phase locking intervals and global lability of synchronisation - showing power law statistics at the critical threshold in a classical model of synchronisation. In this paper, we provide evidence that, within the limits of the model selection approach used to ascertain the presence of power law statistics, the pooling of pairwise phase-locking intervals from a non-critically interacting system can produce a distribution that is similarly assessed as being power law. In contrast, the global lability of synchronisation measure is shown to better discriminate critical from non critical interaction.Comment: (v3) Fixed error in Figure 1; (v2) Added references. Minor edits throughout. Clarified relationship between theoretical critical coupling for infinite size system and 'effective' critical coupling system for finite size system. Improved presentation and discussion of results; results unchanged. Revised Figure 1 to include error bars on r and N; results unchanged; (v1) 11 pages, 7 figure

    A Multi Agent Model for the Limit Order Book Dynamics

    Full text link
    In the present work we introduce a novel multi-agent model with the aim to reproduce the dynamics of a double auction market at microscopic time scale through a faithful simulation of the matching mechanics in the limit order book. The agents follow a noise decision making process where their actions are related to a stochastic variable, "the market sentiment", which we define as a mixture of public and private information. The model, despite making just few basic assumptions over the trading strategies of the agents, is able to reproduce several empirical features of the high-frequency dynamics of the market microstructure not only related to the price movements but also to the deposition of the orders in the book.Comment: 20 pages, 11 figures, in press European Physical Journal B (EPJB

    Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior

    Get PDF
    Despite the availability of very detailed data on financial market, agent-based modeling is hindered by the lack of information about real trader behavior. This makes it impossible to validate agent-based models, which are thus reverse-engineering attempts. This work is a contribution to the building of a set of stylized facts about the traders themselves. Using the client database of Swissquote Bank SA, the largest on-line Swiss broker, we find empirical relationships between turnover, account values and the number of assets in which a trader is invested. A theory based on simple mean-variance portfolio optimization that crucially includes variable transaction costs is able to reproduce faithfully the observed behaviors. We finally argue that our results bring into light the collective ability of a population to construct a mean-variance portfolio that takes into account the structure of transaction costsComment: 26 pages, 9 figures, Fig. 8 fixe

    Effects of Neutron Irradiation on Carbon Doped MgB2 Wire Segments

    Full text link
    We have studied the evolution of superconducting and normal state properties of neutron irradiated Mg(B.962_{.962}C.038_{.038})2_2 wire segments as a function of post exposure annealing time and temperature. The initial fluence fully suppressed superconductivity and resulted in an anisotropic expansion of the unit cell. Superconductivity was restored by post-exposure annealing. The upper critical field, Hc2_{c2}(T=0), approximately scales with Tc_c starting with an undamaged Tc_c near 37 K and Hc2_{c2}(T=0) near 32 T. Up to an annealing temperature of 400 o^ oC the recovery of Tc_c tends to coincide with a decrease in the normal state resistivity and a systematic recovery of the lattice parameters. Above 400 o^ oC a decrease in order along the c- direction coincides with an increase in resistivity, but no apparent change in the evolution of Tc_c and Hc2_{c2}. To first order, it appears that carbon doping and neutron damaging effect the superconducting properties of MgB2_2 independently

    Observational predictions for Thorne-\.Zytkow objects

    Full text link
    Thorne-Z˙\.Zytkow objects (TZ˙\.ZO) are potential end products of the merger of a neutron star with a non-degenerate star. In this work, we have computed the first grid of evolutionary models of TZ˙\.ZOs with the MESA stellar evolution code. With these models, we predict several observational properties of TZ˙\.ZOs, including their surface temperatures and luminosities, pulsation periods, and nucleosynthetic products. We expand the range of possible TZ˙\.ZO solutions to cover 3.45log(T/K)3.653.45 \lesssim \log \left(T/K\right) \lesssim 3.65 and 4.85log(L/L)5.54.85 \lesssim \log \left(L/L_{\odot}\right) \lesssim 5.5. Due to the much higher densities our TZ˙\.ZOs reach compared to previous models, if TZ˙\.ZOs form we expect them to be stable over a larger mass range than previously predicted, without exhibiting a gap in their mass distribution. Using the GYRE stellar pulsation code we show that TZ˙\.ZOs should have fundamental pulsation periods of 1000--2000 days, and period ratios of \approx0.2--0.3. Models computed with a large 399 isotope fully-coupled nuclear network show a nucleosynthetic signal that is different to previously predicted. We propose a new nucleosynthetic signal to determine a star's status as a TZ˙\.ZO: the isotopologues 44TiO2^{44}\rm{Ti} \rm{O}_2 and 44TiO^{44}\rm{Ti} \rm{O}, which will have a shift in their spectral features as compared to stable titanium-containing molecules. We find that in the local Universe (~SMC metallicities and above) TZ˙\.ZOs show little heavy metal enrichment, potentially explaining the difficulty in finding TZ˙\.ZOs to-date.Comment: 17 pages, 16 figures, 3 Tables, Sumbitedd to MNRAS, Zenodo data available https://doi.org/10.5281/zenodo.453442

    Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature

    Full text link
    Graphene is considered to be a promising candidate for future nano-electronics due to its exceptional electronic properties. Unfortunately, the graphene field-effect-transistors (FETs) cannot be turned off effectively due to the absence of a bandgap, leading to an on/off current ratio typically around 5 in top-gated graphene FETs. On the other hand, theoretical investigations and optical measurements suggest that a bandgap up to a few hundred meV can be created by the perpendicular E-field in bi-layer graphenes. Although previous carrier transport measurements in bi-layer graphene transistors did indicate a gate-induced insulating state at temperature below 1 Kelvin, the electrical (or transport) bandgap was estimated to be a few meV, and the room temperature on/off current ratio in bi-layer graphene FETs remains similar to those in single-layer graphene FETs. Here, for the first time, we report an on/off current ratio of around 100 and 2000 at room temperature and 20 K, respectively in our dual-gate bi-layer graphene FETs. We also measured an electrical bandgap of >130 and 80 meV at average electric displacements of 2.2 and 1.3 V/nm, respectively. This demonstration reveals the great potential of bi-layer graphene in applications such as digital electronics, pseudospintronics, terahertz technology, and infrared nanophotonics.Comment: 3 Figure

    Criticality and finite size effects in a simple realistic model of stock market

    Full text link
    We discuss a simple model based on the Minority Game which reproduces the main stylized facts of anomalous fluctuations in finance. We present the analytic solution of the model in the thermodynamic limit and show that stylized facts arise only close to a line of critical points with non-trivial properties. By a simple argument, we show that, in Minority Games, the emergence of critical fluctuations close to the phase transition is governed by the interplay between the signal to noise ratio and the system size. These results provide a clear and consistent picture of financial markets as critical systems.Comment: 4 pages, 4 figure
    corecore