1,875 research outputs found
Beaten into Submissiveness? An Investigation into the Protective Strategies used by Survivors of Domestic Abuse
This is a pre-copyedited, author-produced pdf of an article accepted for publication in Journal of Interpersonal Violence following peer review. Laura Irving & Ben Chi-pun Liu, 'Beaten into Submissiveness? An investigation Into the Protective Strategies Used by Survivors of Domestic Abuse', Journal of Interpersonal Violence, first published online 14 December 2016, available online at doi: 10.1177/0886260516682520 © The Author(s) 2016 Published by SAGEThe aim of the study was to identify the prevalence and perceived helpfulness of a variety of protective strategies that were used by female survivors of domestic abuse and to explore factors that may have influenced strategy usage. Forty participants were recruited from a voluntary sector domestic abuse service, commissioned by an outer London local authority in the UK. The measurement tools used were the Intimate Partner Violence Strategies Index and the CAADA Domestic Abuse, Stalking and ‘Honour’-Based Violence (DASH) Risk Assessment Checklist. The average age was 33 (SD=7.9, range: 20-57), half reported to be of Asian ethnicity, 37.5% White and 12.5% Black or Mixed ethnicity. The average DASH score was 9.8 (SD=13.2, range: 0-18) and an average of 18 (SD=6.7, range: 1-29) protective strategies were utilised by each participant. All of the most commonly used strategies were from the Placating category. Though Safety Planning strategies were rated as the most helpful by all participants, Placating strategies were also rated as helpful by two-thirds of participants. Stepwise multiple regression showed that Placating was the only significant predictor of DASH score (β=0.375, p<0.05) and accounted for 14% of the variance of DASH score. Findings showed that women utilized a diverse range of protective strategies with placating strategies being most intensely used and rated as helpful. However, placating strategy usage could be a risk factor as opposed to a protective factor. This study has also demonstrated that greater placating strategies were used by White than South Asian women, and women who were employed used more formal strategies. This research has extended the knowledge base of protective strategies that professionals can draw from to underpin decisions and interventions when working with domestic abuse survivors.Peer reviewedFinal Accepted Versio
Graphene field-effect-transistors with high on/off current ratio and large transport band gap at room temperature
Graphene is considered to be a promising candidate for future
nano-electronics due to its exceptional electronic properties. Unfortunately,
the graphene field-effect-transistors (FETs) cannot be turned off effectively
due to the absence of a bandgap, leading to an on/off current ratio typically
around 5 in top-gated graphene FETs. On the other hand, theoretical
investigations and optical measurements suggest that a bandgap up to a few
hundred meV can be created by the perpendicular E-field in bi-layer graphenes.
Although previous carrier transport measurements in bi-layer graphene
transistors did indicate a gate-induced insulating state at temperature below 1
Kelvin, the electrical (or transport) bandgap was estimated to be a few meV,
and the room temperature on/off current ratio in bi-layer graphene FETs remains
similar to those in single-layer graphene FETs. Here, for the first time, we
report an on/off current ratio of around 100 and 2000 at room temperature and
20 K, respectively in our dual-gate bi-layer graphene FETs. We also measured an
electrical bandgap of >130 and 80 meV at average electric displacements of 2.2
and 1.3 V/nm, respectively. This demonstration reveals the great potential of
bi-layer graphene in applications such as digital electronics,
pseudospintronics, terahertz technology, and infrared nanophotonics.Comment: 3 Figure
A Phase transition in acoustic propagation in 2D random liquid media
Acoustic wave propagation in liquid media containing many parallel air-filled
cylinders is considered. A self-consistent method is used to compute rigorously
the propagation, incorporating all orders of multiple scattering. It is shown
that under proper conditions, multiple scattering leads to a peculiar phase
transition in acoustic propagation. When the phase transition occurs, a
collective behavior of the cylinders appears and the acoustic waves are
confined in a region of space in the neighborhood of the transmission source. A
novel phase diagram is used to describe such phase transition.
Originally submitted on April 6, 99.Comment: 5 pages, 5 color figure
Economic Fluctuations and Diffusion
Stock price changes occur through transactions, just as diffusion in physical
systems occurs through molecular collisions. We systematically explore this
analogy and quantify the relation between trading activity - measured by the
number of transactions - and the price change ,
for a given stock, over a time interval . To this end, we
analyze a database documenting every transaction for 1000 US stocks over the
two-year period 1994-1995. We find that price movements are equivalent to a
complex variant of diffusion, where the diffusion coefficient fluctuates
drastically in time. We relate the analog of the diffusion coefficient to two
microscopic quantities: (i) the number of transactions in
, which is the analog of the number of collisions and (ii) the local
variance of the price changes for all transactions in , which is the analog of the local mean square displacement between
collisions. We study the distributions of both and , and find that they display power-law tails. Further, we find that
displays long-range power-law correlations in time, whereas
does not. Our results are consistent with the interpretation
that the pronounced tails of the distribution of w_{\Delta t}|
G_{\Delta t} |N_{\Delta t}$.Comment: RevTex 2 column format. 6 pages, 36 references, 15 eps figure
Evaluation of multi-modal, multi-site neuroimaging measures in Huntington's disease: Baseline results from the PADDINGTON study.
BACKGROUND: Macro- and micro-structural neuroimaging measures provide valuable information on the pathophysiology of Huntington's disease (HD) and are proposed as biomarkers. Despite theoretical advantages of microstructural measures in terms of sensitivity to pathology, there is little evidence directly comparing the two. METHODS: 40 controls and 61 early HD subjects underwent 3 T MRI (T1- and diffusion-weighted), as part of the PADDINGTON study. Macrostructural volumetrics were obtained for the whole brain, caudate, putamen, corpus callosum (CC) and ventricles. Microstructural diffusion metrics of fractional anisotropy (FA), mean-, radial- and axial-diffusivity (MD, RD, AD) were computed for white matter (WM), CC, caudate and putamen. Group differences were examined adjusting for age, gender and site. A formal comparison of effect sizes determined which modality and metrics provided a statistically significant advantage over others. RESULTS: Macrostructural measures showed decreased regional and global volume in HD (p < 0.001); except the ventricles which were enlarged (p < 0.01). In HD, FA was increased in the deep grey-matter structures (p < 0.001), and decreased in the WM (CC, p = 0.035; WM, p = 0.053); diffusivity metrics (MD, RD, AD) were increased for all brain regions (p < 0.001). The largest effect sizes were for putamen volume, caudate volume and putamen diffusivity (AD, RD and MD); each was significantly larger than those for all other metrics (p < 0.05). CONCLUSION: The highest performing macro- and micro-structural metrics had similar sensitivity to HD pathology quantified via effect sizes. Region-of-interest may be more important than imaging modality, with deep grey-matter regions outperforming the CC and global measures, for both volume and diffusivity. FA appears to be relatively insensitive to disease effects
Statistical Properties of Share Volume Traded in Financial Markets
We quantitatively investigate the ideas behind the often-expressed adage `it
takes volume to move stock prices', and study the statistical properties of the
number of shares traded for a given stock in a fixed time
interval . We analyze transaction data for the largest 1000 stocks
for the two-year period 1994-95, using a database that records every
transaction for all securities in three major US stock markets. We find that
the distribution displays a power-law decay, and that the
time correlations in display long-range persistence. Further, we
investigate the relation between and the number of transactions
in a time interval , and find that the long-range
correlations in are largely due to those of . Our
results are consistent with the interpretation that the large equal-time
correlation previously found between and the absolute value of
price change (related to volatility) are largely due to
.Comment: 4 pages, two-column format, four figure
Structural Information in Two-Dimensional Patterns: Entropy Convergence and Excess Entropy
We develop information-theoretic measures of spatial structure and pattern in
more than one dimension. As is well known, the entropy density of a
two-dimensional configuration can be efficiently and accurately estimated via a
converging sequence of conditional entropies. We show that the manner in which
these conditional entropies converge to their asymptotic value serves as a
measure of global correlation and structure for spatial systems in any
dimension. We compare and contrast entropy-convergence with mutual-information
and structure-factor techniques for quantifying and detecting spatial
structure.Comment: 11 pages, 5 figures,
http://www.santafe.edu/projects/CompMech/papers/2dnnn.htm
The mixmaster universe: A chaotic Farey tale
When gravitational fields are at their strongest, the evolution of spacetime
is thought to be highly erratic. Over the past decade debate has raged over
whether this evolution can be classified as chaotic. The debate has centered on
the homogeneous but anisotropic mixmaster universe. A definite resolution has
been lacking as the techniques used to study the mixmaster dynamics yield
observer dependent answers. Here we resolve the conflict by using observer
independent, fractal methods. We prove the mixmaster universe is chaotic by
exposing the fractal strange repellor that characterizes the dynamics. The
repellor is laid bare in both the 6-dimensional minisuperspace of the full
Einstein equations, and in a 2-dimensional discretisation of the dynamics. The
chaos is encoded in a special set of numbers that form the irrational Farey
tree. We quantify the chaos by calculating the strange repellor's Lyapunov
dimension, topological entropy and multifractal dimensions. As all of these
quantities are coordinate, or gauge independent, there is no longer any
ambiguity--the mixmaster universe is indeed chaotic.Comment: 45 pages, RevTeX, 19 Figures included, submitted to PR
The n-level spectral correlations for chaotic systems
We study the -level spectral correlation functions of classically chaotic
quantum systems without time-reversal symmetry. According to Bohigas, Giannoni
and Schmit's universality conjecture, it is expected that the correlation
functions are in agreement with the prediction of the Circular Unitary Ensemble
(CUE) of random matrices. A semiclassical resummation formalism allows us to
express the correlation functions as sums over pseudo-orbits. Using an extended
version of the diagonal approximation on the pseudo-orbit sums, we derive the
-level correlation functions identical to the determinantal
correlation functions of the CUE.Comment: 20 pages, no figure, minor corrections mad
Test-Retest Reliability of Diffusion Tensor Imaging in Huntington's Disease.
Diffusion tensor imaging (DTI) has shown microstructural abnormalities in patients with Huntington's Disease (HD) and work is underway to characterise how these abnormalities change with disease progression. Using methods that will be applied in longitudinal research, we sought to establish the reliability of DTI in early HD patients and controls. Test-retest reliability, quantified using the intraclass correlation coefficient (ICC), was assessed using region-of-interest (ROI)-based white matter atlas and voxelwise approaches on repeat scan data from 22 participants (10 early HD, 12 controls). T1 data was used to generate further ROIs for analysis in a reduced sample of 18 participants. The results suggest that fractional anisotropy (FA) and other diffusivity metrics are generally highly reliable, with ICCs indicating considerably lower within-subject compared to between-subject variability in both HD patients and controls. Where ICC was low, particularly for the diffusivity measures in the caudate and putamen, this was partly influenced by outliers. The analysis suggests that the specific DTI methods used here are appropriate for cross-sectional research in HD, and give confidence that they can also be applied longitudinally, although this requires further investigation. An important caveat for DTI studies is that test-retest reliability may not be evenly distributed throughout the brain whereby highly anisotropic white matter regions tended to show lower relative within-subject variability than other white or grey matter regions
- …