11 research outputs found

    Applying Unique Molecular Identifiers in Next Generation Sequencing Reveals a Constrained Viral Quasispecies Evolution under Cross-Reactive Antibody Pressure Targeting Long Alpha Helix of Hemagglutinin.

    Get PDF
    To overcome yearly efforts and costs for the production of seasonal influenza vaccines, new approaches for the induction of broadly protective and long-lasting immune responses have been developed in the past decade. To warrant safety and efficacy of the emerging crossreactive vaccine candidates, it is critical to understand the evolution of influenza viruses in response to these new immune pressures. Here we applied unique molecular identifiers in next generation sequencing to analyze the evolution of influenza quasispecies under in vivo antibody pressure targeting the hemagglutinin (HA) long alpha helix (LAH). Our vaccine targeting LAH of hemagglutinin elicited significant seroconversion and protection against homologous and heterologous influenza virus strains in mice. The vaccine not only significantly reduced lung viral titers, but also induced a well-known bottleneck effect by decreasing virus diversity. In contrast to the classical bottleneck effect, here we showed a significant increase in the frequency of viruses with amino acid sequences identical to that of vaccine targeting LAH domain. No escape mutant emerged after vaccination. These results not only support the potential of a universal influenza vaccine targeting the conserved LAH domains, but also clearly demonstrate that the well-established bottleneck effect on viral quasispecies evolution does not necessarily generate escape mutants

    A virus-like particle vaccine candidate for influenza A virus based on multiple conserved antigens presented on hepatitis B tandem core particles

    Get PDF
    Existing Influenza A virus (IAV) vaccines target variable parts of the virus that may change between seasons. Vaccine design relies on predicting the predominant circulating influenza strains but when there is a mismatch between vaccine and circulating strains, efficacy is sub-optimal. Furthermore, current approaches provide limited protection against emerging influenza strains that may cause pandemics. One solution is to design vaccines that target conserved protein domains of influenza, which remain largely unchanged over time and are likely to be found in emergent variants. We present a virus-like particle (VLP), built using the hepatitis B virus tandem core platform, as an IAV vaccine candidate containing multiple conserved antigens. Hepatitis B core protein spontaneously assembles into a VLP that is immunogenic and confers immunogenicity to proteins incorporated into the major insertion region (MIR) of core monomers. However, insertion of antigen sequences may disrupt particle assembly preventing VLP formation or result in unstable particles. We have overcome these problems by genetically manipulating the hepatitis B core to express core monomers in tandem, ligated with a flexible linker, incorporating different antigens at each of the MIRs. Immunisation with this VLP, named Tandiflu1, containing 4 conserved antigens from matrix protein 2 ectodomain and hemagglutinin stalk, leads to production of cross-reactive and protective antibodies. The polyclonal antibodies induced by Tandiflu1 can bind IAV Group 1 hemagglutinin types H1, H5, H11, H9, H16 and a conserved epitope on matrix protein 2 expressed by most strains of IAV. Vaccination with Tandiflu1 results in 100% protection from a lethal influenza challenge with H1N1 IAV. Serum transfer from vaccinated animals is sufficient to confer protection from influenza-associated illness in naïve mice. These data suggest that a Tandem Core based IAV vaccine might provide broad protection against common and emergent H1 IAV strains responsible for seasonal and pandemic influenza in man

    Production and purification of chimeric HBc virus-like particles carrying influenza virus LAH domain as vaccine candidates

    Get PDF
    Background: The lack of a universal influenza vaccine is a global health problem. Interest is now focused on structurally conserved protein domains capable of eliciting protection against a broad range of influenza virus strains. The long alpha helix (LAH) is an attractive vaccine component since it is one of the most conserved influenza hemagglutinin (HA) stalk regions. For an improved immune response, the LAH domain from H3N2 strain has been incorporated into virus-like particles (VLPs) derived from hepatitis B virus core protein (HBc) using recently developed tandem core technology. Results: Fermentation conditions for recombinant HBc-LAH were established in yeast Pichia pastoris and a rapid and efficient purification method for chimeric VLPs was developed to match the requirements for industrial scale-up. Purified VLPs induced strong antibody responses against both group 1 and group 2 HA proteins in mice. Conclusion: Our results indicate that the tandem core technology is a useful tool for incorporation of highly hydrophobic LAH domain into HBc VLPs. Chimeric VLPs can be successfully produced in bioreactor using yeast expression system. Immunologic data indicate that HBc VLPs carrying the LAH antigen represent a promising universal influenza vaccine component

    Immunogenicity of a Promiscuous T Cell Epitope Peptide Based Conjugate Vaccine against Benzo[a]pyrene: Redirecting Antibodies to the Hapten

    Get PDF
    The prototype polycyclic aromatic hydrocarbon benzo[a]pyrene (B[a]P) is an environmental pollutant and food contaminant of epidemiological importance. To protect against adverse effects of this ubiquitous carcinogen, we developed an immunoprophylactic strategy based on a B[a]P-protein conjugate vaccine to induce B[a]P specific antibodies (Grova et al., Vaccine. 2009;27:4142–51). Here, we investigated in mice the efficacy of B[a]P-peptide conjugates based on promiscuous T cell epitopes (TCE) into further improve this approach. We showed that B[a]P-peptide conjugates induced very different levels of hapten-specific antibodies with variable functional efficacy, depending on the carrier. In some cases peptide carriers induced a more efficient antibody response against B[a]P than tetanus toxoid as a protein carrier, with the capacity to sequester more B[a]P in the blood. Reducing the carrier size to a single TCE can dramatically shift the antibody bias from the carrier to the B[a]P. Conjugates based on the TCE FIGITEL induced the best anti-hapten response and no antibodies against the carrier peptide. Some peptide conjugates increased the selectivity of the antibodies for the activated metabolite 7,8-diol-B[a]P and B[a]P by one or two orders of magnitude. The antibody efficacy was also demonstrated in their ability to sequester B[a]P in the blood and modulate its faecal excretion (15–56%). We further showed that pre-existing immunity to the carrier from which the TCE was derived did not reduce the immunogenicity of the peptide conjugate. In conclusion, we showed that a vaccination against B[a]P using promiscuous TCEs of tetanus toxin as carriers is feasible even in case of a pre-existing immunity to the toxoid and that some TCE epitopes dramatically redirect the antibody response to the hapten. Further studies to demonstrate a long-term protection of an immunoprophylactic immunisation against B[a]P are warranted

    Characterization of TNP-470-induced modifications to cell functions in HUVEC and cancer cells.

    No full text
    The aim of the present work is to characterize (both in vitro and in vivo) the influence of TNP-470 on different cell functions involved in angiogenesis and, more particularly, on endothelial cell growth, cell migration and vessel formation. In addition, a possible direct anti-tumor activity was investigated. To this end, we made use in vitro of human umbilical cord endothelial vein (HUVEC) cells and two human cancer cell lines. The TNP-470 effects on the growth of cancer cell lines were compared to those of Taxol (an inhibitor of microtubule depolymerization), a cytotoxic reference which also displays strong antiogenic activity at low (non-toxic) doses. The in vitro effects were characterized on the mouse mammary MXT adenocarcinoma, on which we also characterized the influence of three clinically active anti-tumor compounds (as cytotoxic references). The purpose of this part of the study was to determine the actual TNP-470-related anti-tumor activity and to evaluate the possible toxic side-effects at the doses at which this compound induces tumor growth inhibition. These investigations were completed by analyzing the TNP-470 effects on HUVEC cell motility and in vitro and in vivo vessel formation. The results show that in vitro, TNP-470 inhibited the growth not only of HUVEC, but also of neoplastic cells. Furthermore, TNP-470 clearly inhibited in vitro endothelial cell motility (p<10(-5)). However, it had only a minor effect (p=0.02) on the formation of HUVEC cell networks on Matrigel(R). In vivo, TNP-470 was able to inhibit tumor growth (on the MXT model) at a dose (50 mg/kg) associated with toxic side-effects. Histological examination showed a significant inhibition of vessel formation (p<0.001) at high (toxic) and intermediary (non-toxic) doses (50 and 20 mg/kg). However, we also observed that TNP-470 stimulated lymphocyte proliferation. Thus, care must be taken with the TNP-470 compound in combination with other anti-tumoral agents in order to avoid certain unfortunate clinical complications.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    A Th17 cell-intrinsic glutathione/mitochondrial-IL-22 axis protects against intestinal inflammation.

    No full text
    Although the intestinal tract is a major site of reactive oxygen species (ROS) generation, the mechanisms by which antioxidant defense in gut T cells contribute to intestinal homeostasis are currently unknown. Here we show, using T cell-specific ablation of the catalytic subunit of glutamate cysteine ligase (Gclc), that the ensuing loss of glutathione (GSH) impairs the production of gut-protective IL-22 by Th17 cells within the lamina propria. Although Gclc ablation does not affect T cell cytokine secretion in the gut of mice at steady-state, infection with C. rodentium increases ROS, inhibits mitochondrial gene expression and mitochondrial function in Gclc-deficient Th17 cells. These mitochondrial deficits affect the PI3K/AKT/mTOR pathway, leading to reduced phosphorylation of the translation repressor 4E-BP1. As a consequence, the initiation of translation is restricted, resulting in decreased protein synthesis of IL-22. Loss of IL-22 results in poor bacterial clearance, enhanced intestinal damage, and high mortality. ROS-scavenging, reconstitution of IL-22 expression or IL-22 supplementation in vivo prevent the appearance of these pathologies. Our results demonstrate the existence of a previously unappreciated role for Th17 cell-intrinsic GSH coupling to promote mitochondrial function, IL-22 translation and signaling. These data reveal an axis that is essential for maintaining the integrity of the intestinal barrier and protecting it from damage caused by gastrointestinal infection

    Glutathione Restricts Serine Metabolism to Preserve Regulatory T Cell Function

    No full text
    Regulatory T cells (Tregs) maintain immune homeostasis and prevent autoimmunity. Serine stimulates glutathione (GSH) synthesis and feeds into the one-carbon metabolic network (1CMet) essential for effector T cell (Teff) responses. However, serine’s functions, linkage to GSH, and role in stress responses in Tregs are unknown. Here, we show, using mice with Treg-specific ablation of the catalytic subunit of glutamate cysteine ligase ( Gclc), that GSH loss in Tregs alters serine import and synthesis and that the integrity of this feedback loop is critical for Treg suppressive capacity. Although Gclc ablation does not impair Treg differentiation, mutant mice exhibit severe autoimmunity and enhanced anti-tumor responses. Gclc-deficient Tregs show increased serine metabolism, mTOR activation, and proliferation but downregulated FoxP3. Limitation of cellular serine in vitro and in vivo restores FoxP3 expression and suppressive capacity of Gclc-deficient Tregs. Our work reveals an unexpected role for GSH in restricting serine availability to preserve Treg functionality
    corecore