4,889 research outputs found

    A Finite Element Model for Describing the Effect of Muscle Shortening on Surface EMG

    Get PDF
    A finite-element model for the generation of single fiber action potentials in a muscle undergoing various degrees of fiber shortening is developed. The muscle is assumed fusiform with muscle fibers following a curvilinear path described by a Gaussian function. Different degrees of fiber shortening are simulated by changing the parameters of the fiber path and maintaining the volume of the muscle constant. The conductivity tensor is adapted to the muscle fiber orientation. In each point of the volume conductor, the conductivity of the muscle tissue in the direction of the fiber is larger than that in the transversal direction. Thus, the conductivity tensor changes point-by-point with fiber shortening, adapting to the fiber paths. An analytical derivation of the conductivity tensor is provided. The volume conductor is then studied with a finite-element approach using the analytically derived conductivity tensor. Representative simulations of single fiber action potentials with the muscle at different degrees of shortening are presented. It is shown that the geometrical changes in the muscle, which imply changes in the conductivity tensor, determine important variations in action potential shape, thus affecting its amplitude and frequency content. The model provides a new tool for interpreting surface EMG signal features with changes in muscle geometry, as it happens during dynamic contractions

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 ÎĽ\mum, to 11.0 ÎĽ\mum. The baseline design includes the goal wavelength extension to 0.4 ÎĽ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 ÎĽ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    Subtleties on energy calculations in the image method

    Full text link
    In this pedagogical work we point out a subtle mistake that can be done by undergraduate or graduate students in the computation of the electrostatic energy of a system containing charges and perfect conductors if they naively use the image method. Specifically, we show that the naive expressions for the electrostatic energy for these systems obtained directly from the image method are wrong by a factor 1/2. We start our discussion with well known examples, namely, point charge-perfectly conducting wall and point charge-perfectly conducting sphere and then proceed to the demonstration of general results, valid for conductors of arbitrary shapes.Comment: 9 pages, 2 figures; Major change in this version: subsection added to Sect.4 (theorem generalization). Minor changes: title replaced; corrections to the English; some explanatory comments adde

    Past and future blurring at fundamental length scale

    Full text link
    We obtain the Îş\kappa-deformed versions of the retarded and advanced Green functions and show that their causality properties are blurred in a time interval of the order of a length parameter q=1/(2Îş)q=1/(2\kappa). The functions also indicate a smearing of the light cone. These results favor the interpretation of qq as a fundamental length scale below which the concept of a point in spacetime should be substituted by the concept of a fuzzy region of radius qq, as proposed long ago by Heisenberg.Comment: Essentially, this is the version published in the Phys. Rev. Lett. 105, 211601 (2010). It has 4 pages and contains 2 figure

    Neuro-Musculoskeletal Mapping for Man-Machine Interfacing.

    Get PDF
    We propose a myoelectric control method based on neural data regression and musculoskeletal modeling. This paradigm uses the timings of motor neuron discharges decoded by high-density surface electromyogram (HD-EMG) decomposition to estimate muscle excitations. The muscle excitations are then mapped into the kinematics of the wrist joint using forward dynamics. The offline tracking performance of the proposed method was superior to that of state-of-the-art myoelectric regression methods based on artificial neural networks in two amputees and in four out of six intact-bodied subjects. In addition to joint kinematics, the proposed data-driven model-based approach also estimated several biomechanical variables in a full feed-forward manner that could potentially be useful in supporting the rehabilitation and training process. These results indicate that using a full forward dynamics musculoskeletal model directly driven by motor neuron activity is a promising approach in rehabilitation and prosthetics to model the series of transformations from muscle excitation to resulting joint function

    Advances in surface EMG signal simulation with analytical and numerical descriptions of the volume conductor

    Get PDF
    Surface electromyographic (EMG) signal modeling is important for signal interpretation, testing of processing algorithms, detection system design, and didactic purposes. Various surface EMG signal models have been proposed in the literature. In this study we focus on 1) the proposal of a method for modeling surface EMG signals by either analytical or numerical descriptions of the volume conductor for space-invariant systems, and 2) the development of advanced models of the volume conductor by numerical approaches, accurately describing not only the volume conductor geometry, as mainly done in the past, but also the conductivity tensor of the muscle tissue. For volume conductors that are space-invariant in the direction of source propagation, the surface potentials generated by any source can be computed by one-dimensional convolutions, once the volume conductor transfer function is derived (analytically or numerically). Conversely, more complex volume conductors require a complete numerical approach. In a numerical approach, the conductivity tensor of the muscle tissue should be matched with the fiber orientation. In some cases (e.g., multi-pinnate muscles) accurate description of the conductivity tensor may be very complex. A method for relating the conductivity tensor of the muscle tissue, to be used in a numerical approach, to the curve describing the muscle fibers is presented and applied to representatively investigate a bi-pinnate muscle with rectilinear and curvilinear fibers. The study thus propose an approach for surface EMG signal simulation in space invariant systems as well as new models of the volume conductor using numerical methods

    Dynamic Multi-Objective Optimization With jMetal and Spark: a Case Study

    Get PDF
    Technologies for Big Data and Data Science are receiving increasing research interest nowadays. This paper introduces the prototyping architecture of a tool aimed to solve Big Data Optimization problems. Our tool combines the jMetal framework for multi-objective optimization with Apache Spark, a technology that is gaining momentum. In particular, we make use of the streaming facilities of Spark to feed an optimization problem with data from different sources. We demonstrate the use of our tool by solving a dynamic bi-objective instance of the Traveling Salesman Problem (TSP) based on near real-time traffic data from New York City, which is updated several times per minute. Our experiment shows that both jMetal and Spark can be integrated providing a software platform to deal with dynamic multi-optimization problems.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore