27 research outputs found

    Estimating flood characteristics using geomorphologic flood index with regards to rainfall intensity-duration-frequency-area curves and CADDIES-2D model in three Iranian basins

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this recordThere is not enough data and computational power for conventional flood mapping methods in many parts of the world, thus fast and low-data-demanding methods are very useful in facing the disaster. This paper presents an innovative procedure for estimating flood extent and depth using only DEM SRTM 30 m and the Geomorphic Flood Index (GFI). The Geomorphologic Flood Assessment (GFA) tool which is the corresponding application of the GFI in QGIS is implemented to achieved the results in three basins in Iran. Moreover, the novel concept of Intensity-Duration-Frequency-Area (IDFA) curves is introduced to modify the GFI model by imposing a constraint on the maximum hydrologically contributing area of a basin. The GFA model implements the linear binary classification algorithm to classify a watershed into flooded and non-flooded areas using an optimized GFI threshold that minimizes the errors with a standard flood map of a small region in the study area. The standard hydraulic model envisaged for this study is the Cellular Automata Dual-DraInagE Simulation (CADDIES) 2D model which employs simple transition rules and a weight-based system rather than complex shallow water equations allowing fast flood modelling for large-scale problems. The results revealed that the floodplains generated by the GFI has a good agreement with the standard maps, especially in the fluvial rivers. However, the performance of the GFI decreases in the less steep and alluvial rivers. With some overestimation, the GFI model is also able to capture the general trend of water depth variations in comparison with the CADDIES-2D flood depth map. The modifications made in the GFI model, to confine the maximum precipitable area through implementing the IDFAs, improved the classification of flooded area and estimation of water depth in all study areas. Finally, the calibrated GFI thresholds were used to achieve the complete 100-year floodplain maps of the study areas.University of BasilicataCNR-IMAAOpenet TechnologiesRoyal Academy of Engineering (RAE

    Primary antibody deficiency in a tertiary referral hospital: A 30-year experiment

    Get PDF
    Background: Primary antibody deficiency (PAD) is the most common group of primary immunodeficiency disorders (PID), with a broad spectrum of clinical features ranging from severe and recurrent infections to asymptomatic disease. Objectives: The current study was performed to evaluate and compare demographic and clinical data in the most common types of PAD. Materials and Methods: We performed a retrospective review of the medical records of all PAD patients with a confirmed diagnosis of common variable immunodeficiency (CVID), hyper IgM syndrome (HIgM), selective IgA deficiency (SIgAD), and X-linked agammaglobulinemia (XLA) who were diagnosed during the last 30 years at the Children�s Medical Center, Tehran, Iran. Results: A total number of 280 cases of PAD (125 CVID, 32 HIgM, 63 SIgAD, and 60 XLA) were enrolled in the study. The median (range) age at the onset of disease in CVID, HIgM, SIgAD, and XLA was 2 (0-46), 0.91 (0-9), 1 (0-26), and 1 (0-10) years, respectively. Gastrointestinal infections were more prevalent in CVID patients, as were central nervous system infections in XLA patients. Autoimmune complications were more prevalent in HIgM patients, malignancies in CVID patients, and allergies in SIgAD patients. The mortality rate for CVID, HIgM, and XLA was 27.2, 28.1, and 25, respectively. No deaths were reported in SIgAD patients. Conclusions: SIgAD patients had the best prognosis. While all PAD patients should be monitored for infectious complications, special attention should be paid to the finding of malignancy and autoimmune disorders in CVID and HIgM patients, respectively. © 2015 Esmon Publicidad

    Consensus Middle East and North Africa Registry on Inborn Errors of Immunity

    Get PDF
    Background: Inborn errors of immunity (IEIs) are a heterogeneous group of genetic defects of immunity, which cause high rates of morbidity and mortality mainly among children due to infectious and non-infectious complications. The IEI burden has been critically underestimated in countries from middle- and low-income regions and the majority of patients with IEI in these regions lack a molecular diagnosis. Methods: We analyzed the clinical, immunologic, and genetic data of IEI patients from 22 countries in the Middle East and North Africa (MENA) region. The data was collected from national registries and diverse databases such as the Asian Pacific Society for Immunodeficiencies (APSID) registry, African Society for Immunodeficiencies (ASID) registry, Jeffrey Modell Foundation (JMF) registry, J Project centers, and International Consortium on Immune Deficiency (ICID) centers. Results: We identified 17,120 patients with IEI, among which females represented 39.4%. Parental consanguinity was present in 60.5% of cases and 27.3% of the patients were from families with a confirmed previous family history of IEI. The median age of patients at the onset of disease was 36 months and the median delay in diagnosis was 41 months. The rate of registered IEI patients ranges between 0.02 and 7.58 per 100,000 population, and the lowest rates were in countries with the highest rates of disability-adjusted life years (DALY) and death rates for children. Predominantly antibody deficiencies were the most frequent IEI entities diagnosed in 41.2% of the cohort. Among 5871 patients genetically evaluated, the diagnostic yield was 83% with the majority (65.2%) having autosomal recessive defects. The mortality rate was the highest in patients with non-syndromic combined immunodeficiency (51.7%, median age: 3.5 years) and particularly in patients with mutations in specific genes associated with this phenotype (RFXANK, RAG1, and IL2RG). Conclusions: This comprehensive registry highlights the importance of a detailed investigation of IEI patients in the MENA region. The high yield of genetic diagnosis of IEI in this region has important implications for prevention, prognosis, treatment, and resource allocation

    Transient anhedonia phenotype and altered circadian timing of behaviour during night-time dim light exposure in Per3(-/-) mice, but not wildtype mice.

    Get PDF
    Industrialisation greatly increased human night-time exposure to artificial light, which in animal models is a known cause of depressive phenotypes. Whilst many of these phenotypes are 'direct' effects of light on affect, an 'indirect' pathway via altered sleep-wake timing has been suggested. We have previously shown that the Period3 gene, which forms part of the biological clock, is associated with altered sleep-wake patterns in response to light. Here, we show that both wild-type and Per3(-/-) mice showed elevated levels of circulating corticosterone and increased hippocampal Bdnf expression after 3 weeks of exposure to dim light at night, but only mice deficient for the PERIOD3 protein (Per3(-/-)) exhibited a transient anhedonia-like phenotype, observed as reduced sucrose preference, in weeks 2-3 of dim light at night, whereas WT mice did not. Per3(-/-) mice also exhibited a significantly smaller delay in behavioural timing than WT mice during weeks 1, 2 and 4 of dim light at night exposure. When treated with imipramine, neither Per3(-/-) nor WT mice exhibited an anhedonia-like phenotype, and neither genotypes exhibited a delay in behavioural timing in responses to dLAN. While the association between both Per3(-/-) phenotypes remains unclear, both are alleviated by imipramine treatment during dim night-time light

    Lake and Reservoir Evaporation Estimation: Sensitivity Analysis and Ranking Existing Methods

    No full text
    Introduction: Water when harvested is commonly stored in dams, but approximately up to half of it may be lost due to evaporation leading to a huge waste of our resources. Estimating evaporation from lakes and reservoirs is not a simple task as there are a number of factors that can affect the evaporation rate, notably the climate and physiography of the water body and its surroundings. Several methods are currently used to predict evaporation from meteorological data in open water reservoirs. Based on the accuracy and simplicity of the application, each of these methods has advantages and disadvantages. Although evaporation pan method is well known to have significant uncertainties both in magnitude and timing, it is extensively used in Iran because of its simplicity. Evaporation pan provides a measurement of the combined effect of temperature, humidity, wind speed and solar radiation on the evaporation. However, they may not be adequate for the reservoir operations/development and water accounting strategies for managing drinking water in arid and semi-arid conditions which require accurate evaporation estimates. However, there has not been a consensus on which methods were better to employ due to the lack of important long-term measured data such as temperature profile, radiation and heat fluxes in most lakes and reservoirs in Iran. Consequently, we initiated this research to find the best cost−effective evaporation method with possibly fewer data requirements in our study area, i.e. the Doosti dam reservoir which is located in a semi-arid region of Iran. Materials and Methods: Our study site was the Doosti dam reservoir located between Iran and Turkmenistan borders, which was constructed by the Ministry of Water and Land Reclamation of the Republic of Turkmenistan and the Khorasan Razavi Regional Water Board of the Islamic Republic of Iran. Meteorological data including maximum and minimum air temperature and evaporation from class A pan were acquired from the Doosti Dam weather station. Relative humidity, wind speed, atmospheric pressure and precipitation were acquired from the Pol−Khatoon weather station. Dew point temperature and sunshine data were collected from the Sarakhs weather station. Lake area was estimated from hypsometric curve in relation to lake level data. Temperature measurements were often performed in 16−day periods or biweekly from September 2011 to September 2012. Temperature profile of the lake (required for lake evaporation estimation) was measured at different points of the reservoir using a portable multi−meter. The eighteen existing methods were compared and ranked based on Bowen ratio energy balance method (BREB). Results and Discussion: The estimated annual evaporation values by all of the applied methods in this study, ranged from 21 to 113mcm (million cubic meters). BREB annual evaporation obtained value was equal to 69.86mcm and evaporation rate averaged 5.47mm d-1 during the study period. According to the results, there is a relatively large difference between the obtained evaporation values from the adopted methods. The sensitivity analysis of evaporation methods for some input parameters indicated that the Hamon method (Eq. 16) was the most sensitive to the input parameters followed by the Brutsaert−Stricker and BREB, and radiation−temperature methods (Makkink, Jensen−Haise and Stephen−Stewart) had the least sensitivity to input data. Besides, the air temperature, solar radiation (sunshine data), water surface temperature and wind speed data had the most effect on lake evaporation estimations, respectively. Finally, all evaporation estimation methods in this study have been ranked based on RMSD values. On a daily basis, the Jensen−Haise and the Makkink (solar radiation, temperature group), Penman (Combination group) and Hamon (temperature, day length group) methods had a relatively reasonable performance. As the results on a monthly scale, the Jensen−Haise and Makkink produced the most accurate evaporation estimations even by the limited measurements of the input data. Conclusion: This study was carried out with the objective of estimating evaporation from the Doosti dam reservoir, and comparison and evaluation of conventional method to find the most accurate method(s) for limited data conditions. These examinations recognized the Jensen−Haise, Makkink, Hamon (Eq. 17), Penman and deBruin methods as the most consistent methods with the monthly rate of BREB evaporation estimates. The results showed that radiation−temperature methods (Jensen−Haise and Makkink) have appropriate accuracy especially on a monthly basis. Also deBruin, Penman (combination group), Hamon and Papadakis (temperature group) methods produced relatively accurate results. The results revealed that it is necessary to calibrate and adjust some evaporation estimation methods for the Doosti dam reservoir. According to the required input data, sensitivity and accuracy of these methods, it can be concluded that Jensen−Haise and Makkink were the most appropriate methods for estimating the lake evaporation in this region especially when measured data were not available

    Calibration and Validation Parameter of Hydrologic Model HEC-HMS using Particle Swarm Optimization Algorithms – Single Objective

    No full text
    Introduction: Planning and management of water resource and river basins needs use of conceptual hydrologic models which play a significant role in predicting basins response to different climatic and meteorological processes. Evaluating watershed response through mathematical hydrologic models requires finding a set of parameter values of the model which provides thebest fit between observed and estimated hydrographs in a procedure called calibration. Asmanual calibration is tedious, time consuming and requires personal experience, automaticcalibration methods make application of more significant CRR models which are based onusing a systematic search procedure to find good parameter sets in terms of at least oneobjective function. Materials and Methods: Conceptual hydrologic models play a significant role inpredicting a basin’s response to different climatic and meteorological processes within natural systems. However, these models require a number of estimated parameters. Model calibration is the procedure of adjusting the parametervalues until the model predictions match the observed data. Manual calibration of high-fidelity hydrologic (simulation) models is tedious, time consuming and sometimesimpractical, especially when the number of parameters islarge. Moreover, the high degrees of nonlinearity involved in different hydrologic processes and non-uniqueness ofinverse-type calibration problems make it difficult to find asingle set of parameter values. In this research, the conceptual HEC-HMS model is integrated with the Particle Swarm Optimization (PSO) algorithm.The HEC-HMS model was developed as areplacement for HEC-1, which has long been considered as astandard model for hydrologic simulation. Most of thehydrologic models employed in HEC-HMS are event-basedmodels simulating a single storm requiring the specificationof all conditions at the beginning of the simulation. The soil moistureaccounting model in the HEC-HMS is the onlycontinuous model that simulates both wet and dry weatherbehavior.Programming of HEC –HMS has been done by MATLAB and techniques such as elite mutation and creating confusion have been used in order to strengthen the algorithm and improve the results. The event-based HEC-HMS model simulatesthe precipitation-runoff process for each set of parameter values generated by PSO. Turbulentand elitism with mutation are also employed to deal with PSO premature convergence. The integrated PSO-HMS model is tested on the Kardeh dam basin located in the Khorasan Razavi province. Results and Discussion: Input parameters of hydrologic models are seldomknown with certainty. Therefore, they are not capable ofdescribing the exact hydrologic processes. Input data andstructural uncertainties related to scale and approximationsin system processes are different sources of uncertainty thatmake it difficult to model exact hydrologic phenomena.In automatic calibration, the parameter values dependon the objective function of the search or optimization algorithm.In characterizing a runoff hydrograph, threecharacteristics of time-to-peak, peak of discharge and totalrunoff volume are of the most importance. It is thereforeimportant that we simulate and observe hydrographs matchas much as possible in terms of those characteristics. Calibration was carried out in single objective cases. Model calibration in single-objective approach with regard to the objective function in the event of NASH and RMSE were conducted separately.The results indicated that the capability of the model was calibrated to an acceptable level of events. Continuing calibration results were evaluated by four different criteria.Finally, to validate the model parameters with those obtained from the calibration, tests perfomed indicated poor results. Although, based on the calibration and verification of individual events one event remains, suggesting set is a possible parameter. Conclusion: All events were evaluated by validations and the results show that the performance model is not desirable. The results emphasized the impossibility of obtaining unique parameters for a basin. This method of solution, because of non-single solutions of calibration, could be helpful as an inverse problem that could limit the number of candidates. The above analysis revealed the existence of differentparameter sets that can altogether simulate verificationevents quite well, which shows the non-uniqueness featureof the calibration problem under study. However, the methodologyhas benefited from that feature by finding newparameter intervals that should be fine-tuned further inorder to decrease input and model prediction uncertainties.The proposed methodology performed well in the automatedcalibration of an event-based hydrologic model;however, the authors are aware of a drawback of the presentedanalysis – this undertakingwas not a completely fair validationprocedure. It is because validation events represent possiblefuture scenarios and thus are not available at the time ofmodel calibration. Hence, an event being selected as a validationevent should not be used to receive any morefeedback for adjusting parameter values and ranges.However,this remark was not fully taken into consideration, mostlybecause of being seriously short of enough observed eventsin this calibration study. Therefore, the proposed methodology,although sound and useful, should be validated inother case studies with more observed flood events

    Enhancing flood hazard estimation methods on alluvial fans using an integrated hydraulic, geological and geomorphological approach

    No full text
    Due to the uncertainty concerning the location of flow paths on active alluvial fans, alluvial fan floods could be more dangerous than riverine floods. The United States Federal Emergency Management Agency (FEMA) used a simple stochastic model named FAN for this purpose, which has been practiced for many years. In the last decade, this model has been criticized as a consequence of development of more complex computer models. This study was conducted on three alluvial fans located in northeast and southeast Iran using a combination of the FAN model, the hydraulic portion of the FLO-2D model, and geomorphological information. Initial stages included three steps: (a) identifying the alluvial fans' landforms, (b) determining the active and inactive areas of alluvial fans, and (c) delineating 100-year flood within these selected areas. This information was used as an input in the mentioned three approaches of the (i) FLO-2D model, (ii) geomorphological method, and (iii) FAN model. Thereafter, the results of each model were obtained and geographical information system (GIS) layers were created and overlaid. Afterwards, using a scoring system, the results were evaluated and compared. The goal of this research was to introduce a simple but effective solution to estimate the flood hazards. It was concluded that the integrated method proposed in this study is superior at projecting alluvial fan flood hazards with minimum required input data, simplicity, and affordability, which are considered the primary goals of such comprehensive studies. These advantages are more highlighted in underdeveloped and developing countries, which may well lack detailed data and financially cannot support such costly projects. Furthermore, such a highly cost-effective method could be greatly advantageous and pragmatic for developed countries

    Effects of celecoxib adjunct to selective serotonin reuptake inhibitors on obsessive-compulsive disorder

    No full text
    Introduction: Inflammatory processes in the brain play an important role in the etiopathogenesis of Obsessive-Compulsive Disorder (OCD). Cyclooxygenase inhibitors, such as celecoxib reduce the production of proinflammatory cytokines. This double-blind study aimed to investigate the effects of adding celecoxib to Selective Serotonin Reuptake Inhibitors (SSRIs)on treating OCD. Methods: Sixty patients who met the diagnosis criteria for OCD based on the Diagnostic and Statistical Manual of Mental Disorders -Fourth Edition- Text Revision (DSM-IV-TR) were recruited in the present study. Two psychiatrists independently confirmed the diagnosis by performing structured interviews. The study participants included 23 patients who received SSRIs and celecoxib (400 mg twice daily) and 22 patients in the control group that received SSRIs and placebo. Moreover, at baseline, in weeks 4, 8, and 12, the explored patients were assessed by a psychiatrist using the Yale-Brown Obsessive-Compulsive Scale (Y-BCOS). Results: A significant difference was observed in the change of scores on the Y-BOCS in week 12, compared with the onset of the study between the study groups (t= -8.976, df=38, P=0.001). There was a significant difference between the study groups in obsession (F= 49.19, df= 1, P�0.001), compulsion (F= 13.78, df= 1, P= 0.001), and OCD (F= 57.25, df= 1, P�0.001), i.e., higher in the celecoxib group. Conclusion: This study showed that adjuvant treatment with celecoxib can further improve the symptoms of OCD in individuals receiving SSRIs. © 2021 Iran University of Medical Sciences. All rights reserved

    Effect of changing journal clubs from traditional method to evidence-based method on psychiatry residents

    No full text
    Farhad Faridhosseini,1 Ali Saghebi,2 Majid Khadem-Rezaiyan,3 Fatemeh Moharari,2 Maliheh Dadgarmoghaddam3 1Psychiatry and Behavioral Sciences Research Center, 2Department of Psychiatry, Psychiatry and Behavioral Sciences Research Center, 3Community Medicine, Faculty of Medicine, Mahhad University of Medical Sciences, Mashhad, Iran Introduction: Journal club is a valuable educational tool in the medical field. This method follows different goals. This study aims to investigate the effect on psychiatry residents of changing journal clubs from the traditional method to the evidence-based method. Method: This study was conducted using a before–after design. First- and second-year residents of psychiatry were included in the study. First, the status quo was evaluated by standardized questionnaire regarding the effect of journal club. Then, ten sessions were held to familiarize the residents with the concept of journal club. After that, evidence-based journal club sessions were held. The questionnaire was given to the residents again after the final session. Data were analyzed through descriptive statistics (frequency and percentage frequency, mean and standard deviation), and analytic statistics (paired t-test) using SPSS 22. Results: Of a total of 20 first- and second-year residents of psychiatry, the data of 18 residents were finally analyzed. Most of the subjects (17 [93.7%]) were females. The mean overall score before and after the intervention was 1.83±0.45 and 2.85±0.57, respectively, which showed a significant increase (P<0.001). Conclusion: Moving toward evidence-based journal clubs seems like an appropriate measure to reach the goals set by this educational tool. Keywords: journal club, evidence-based, residents, education metho
    corecore