85 research outputs found

    Structural Transitions in a Classical Two-Dimensional Molecule System

    Full text link
    The ground state of a classical two-dimensional (2D) system with finite number of charged particles, trapped by two positive impurities charges localized at a distance (zo) from the 2D plane and separated from each other by a distance xp are obtained. The impurities are allowed to carry more than one positive charge. This classical system can form a 2D-like classical molecule that exhibits structural transitions and spontaneous symmetry breaking as a function of the separation between the positive charges before it transforms into two independent 2D-like classical atoms. We also observe structural transitions as a function of the dielectric constant of the substrate which supports the charged particles, in addition to broken symmetry states and unbinding of particles.Comment: 9 pages, 7 figure

    Electron mobility in Si δ-doped GaAs with spatial correlationsin the distribution of charged impurities

    Get PDF
    We present a theoretical study of electron mobility in heavily Si d-doped GaAs in the presence of applied hydrostatic pressure. At low temperature the electron-ionized impurity scattering is the most important scattering mechanism. The presence of DX centers in Si-doped GaAs results in spatial correlations of the charged impurities, which increase the electron mobility through the structure factor of the charged-impurity distribution and/or a decrease in the density of the charged dopants. A Monte Carlo approach has been developed to simulate this distribution in two dimensions for the d+/DX0 and d+/DX- models. In the mobility calculation, both intrasubband and intersubband scatterings are considered with the electron-electron screening within the random-phase approximation. A detailed comparison between experiment and theory shows that theory excluding the correlation effects underestimates the electron mobility systematically. In cooperation with other mechanisms, e.g., self-compensation of Si dopants, in the d layer, both DX-center models can explain the experimental results well. This indicates that in order to effectively study the electronic properties of DX centers via the electron mobility in d-doped structures, the samples must have a relatively low doping concentration in order to prevent self-compensation

    Genomic analysis of two phlebotomine sand fly vectors of Leishmania from the New and Old World.

    Get PDF
    Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites
    corecore