4 research outputs found

    Association of Pulse Pressure With Clinical Outcomes in Patients Under Different Antiplatelet Strategies After Percutaneous Coronary Intervention: Analysis of GLOBAL LEADERS

    Get PDF
    Background: We evaluated the association of pulse pressure (PP) and different antiplatelet regimes with clinical and safety outcomes in an all-comers percutaneous coronary intervention (PCI) population. Methods: In this analysis of GLOBAL LEADERS (n = 15,936) we compared the experimental therapy of 23 months of ticagrelor after 1 month of dual-antiplatelet therapy (DAPT) versus standard DAPT for 12 months followed by aspirin monotherapy in subjects who underwent PCI and were divided into 2 groups according to the median PP (60 mm Hg). The primary end point (all-cause death or new Q-wave myocardial infarction) and the composite end points: patient-oriented composite end points (POCE), Bleeding Academic Research Consortium (BARC) 3 or 5, and net adverse clinical events (NACE) were evaluated. Results: At 2 years, subjects in the high-PP group (n = 7971) had similar rates of the primary end point (4.3% vs 3.9%; P = 0.058), POCE (14.9% vs 12.7%; P = 0.051), and BARC 3 or 5 (2.5% vs 1.7%; P = 0.355) and higher rates of NACE (16.4% vs 13.7%; P = 0.037) compared with the low-PP group (n = 7965). Among patients with PP < 60 mm Hg, the primary end point (3.4% vs 4.4%, adjusted hazard ratio [aHR] 0.77, 95% confidence interval [CI] 0.61-0.96), POCE (11.8% vs 13.5%, aHR 0.86, 95% CI 0.76-0.98), NACE (12.8% vs 14.7%, aHR 0.85, 95% CI 0.76-0.96), and BARC 3 or 5 (1.4% vs 2.1%, aHR 0.69, 95% CI 0.49-0.97) were lower with ticagrelor monotherapy compared with DAPT. The only significant interaction was for BARC 3 or 5 (P = 0.008). Conclusions: After contemporary PCI, subjects with high PP levels experienced high rates of NACE at 2 years. In those with low PP, ticagrelor monotherapy led to a lower risk of bleeding events compared with standard DAPT

    Isolamento e identificação da microbiota periodontal de cães da raça Pastor Alemão Isolate and identify of periodontal microbiota of German Shepherd dogs

    No full text
    A microbiota indígena gengival de cães não está totalmente descrita, sendo sua identificação uma etapa importante no estabelecimento da etiopatogenia e terapia da doença periodontal. O objetivo deste trabalho foi isolar e identificar a microbiota periodontal de cães da raça Pastor Alemão, considerando sítios saudáveis e com doença periodontal. Foram utilizados 29 cães, com idade variando de três a seis anos, sendo analisados espécimes clínicos de sítios periodontais saudáveis de 12 cães e sítios com periodontite de outros 17. Foram isoladas 672 amostras microbianas, com predomínio dos gêneros Pasteurella, Staphylococcus, Porphyromonas e Fusobacterium. A microbiota dos sítios saudáveis equiparou-se à dos sítios doentes, tratando-se de uma microbiota indígena. A microbiota dos sítios doentes apresentou-se aumentada em relação a dos sítios saudáveis, indicando mudança do ambiente do sítio periodontal.<br>The indigenous gingival microbiota of dogs is not totally described, although such identification is an important step to establish the etiopathogenesis and adequate therapy for the periodontal disease. The aims of this study were to isolate and identify the periodontal microbiota of German Shepherd dogs from healthy and with periodontal desease sites. Twenty nine German Shepherd dogs from three to six years of age were used in this study. Clinical specimens were analysed from healthy periodontal sites of 12 dogs and sites presenting gingivitis of 17 dogs. A total amount of 672 microbial samples, were isolated where the predominant genera were Pasteurella spp., Staphylococcus spp., Porphyromonas spp. and Fusobacterium spp. The microbiological population of the affected sites was similar to the healthy sites, consisting on an indigenous microbiota. The microbiota on the affecteded sites was higher in number than on the healthy sites, showing change in the environment of the periodontal sites

    Brazilian Flora 2020: Leveraging the power of a collaborative scientific network

    No full text
    International audienceThe shortage of reliable primary taxonomic data limits the description of biological taxa and the understanding of biodiversity patterns and processes, complicating biogeographical, ecological, and evolutionary studies. This deficit creates a significant taxonomic impediment to biodiversity research and conservation planning. The taxonomic impediment and the biodiversity crisis are widely recognized, highlighting the urgent need for reliable taxonomic data. Over the past decade, numerous countries worldwide have devoted considerable effort to Target 1 of the Global Strategy for Plant Conservation (GSPC), which called for the preparation of a working list of all known plant species by 2010 and an online world Flora by 2020. Brazil is a megadiverse country, home to more of the world's known plant species than any other country. Despite that, Flora Brasiliensis, concluded in 1906, was the last comprehensive treatment of the Brazilian flora. The lack of accurate estimates of the number of species of algae, fungi, and plants occurring in Brazil contributes to the prevailing taxonomic impediment and delays progress towards the GSPC targets. Over the past 12 years, a legion of taxonomists motivated to meet Target 1 of the GSPC, worked together to gather and integrate knowledge on the algal, plant, and fungal diversity of Brazil. Overall, a team of about 980 taxonomists joined efforts in a highly collaborative project that used cybertaxonomy to prepare an updated Flora of Brazil, showing the power of scientific collaboration to reach ambitious goals. This paper presents an overview of the Brazilian Flora 2020 and provides taxonomic and spatial updates on the algae, fungi, and plants found in one of the world's most biodiverse countries. We further identify collection gaps and summarize future goals that extend beyond 2020. Our results show that Brazil is home to 46,975 native species of algae, fungi, and plants, of which 19,669 are endemic to the country. The data compiled to date suggests that the Atlantic Rainforest might be the most diverse Brazilian domain for all plant groups except gymnosperms, which are most diverse in the Amazon. However, scientific knowledge of Brazilian diversity is still unequally distributed, with the Atlantic Rainforest and the Cerrado being the most intensively sampled and studied biomes in the country. In times of “scientific reductionism”, with botanical and mycological sciences suffering pervasive depreciation in recent decades, the first online Flora of Brazil 2020 significantly enhanced the quality and quantity of taxonomic data available for algae, fungi, and plants from Brazil. This project also made all the information freely available online, providing a firm foundation for future research and for the management, conservation, and sustainable use of the Brazilian funga and flora
    corecore