10 research outputs found

    Fenfluramine treatment is associated with improvement in everyday executive function in preschool-aged children (<5 years) with Dravet syndrome: A critical period for early neurodevelopment

    Get PDF
    OBJECTIVE: To evaluate whether fenfluramine (FFA) is associated with improvement in everyday executive function (EF)-self-regulation-in preschool-aged children with Dravet syndrome (DS). METHODS: Children with DS received placebo or FFA in one of two phase III studies (first study: placebo, FFA 0.2 mg/kg/day, or FFA 0.7 mg/kg/day added to stiripentol-free standard-of-care regimens; second study: placebo or FFA 0.4 mg/kg/day added to stiripentol-inclusive regimens). Everyday EF was evaluated at baseline and Week 14-15 for children aged 2-4 years with parent ratings on the Behavior Rating Inventory of Executive Function®-Preschool (BRIEF®-P); raw scores were transformed to T-scores and summarized in Inhibitory Self-Control Index (ISCI), Flexibility Index (FI), Emergent Metacognition Index (EMI), and Global Executive Composite (GEC). Clinically meaningful improvement and worsening were defined using RCI ≥ 90% and RCI ≥ 80% certainty, respectively. The associations between placebo vs FFA combined (0.2, 0.4, and 0.7 mg/kg/day) or individual treatment groups and the likelihood of clinically meaningful change in BRIEF®-P indexes/composite T-scores were evaluated using Somers'd; pairwise comparisons were calculated by 2-sided Fisher's Exact tests (p ≤ 0.05) and Cramér's V. RESULTS: Data were analyzed for 61 evaluable children of median age 3 years (placebo, n = 22; FFA 0.2 mg/kg/day, n = 15; 0.4 mg/kg/day [with stiripentol], n = 10; 0.7 mg/kg/day, n = 14 [total FFA, n = 39]). Elevated or problematic T-scores (T ≥ 65) were reported in 55% to 86% of patients at baseline for ISCI, EMI, and GEC, and in ∼33% for FI. Seventeen of the 61 children (28%) showed reliable, clinically meaningful improvement (RCI ≥ 90% certainty) in at least one BRIEF®-P index/composite, including a majority of the children in the FFA 0.7 mg/kg/day group (9/14, 64%). Only 53% of these children (9/17) also experienced clinically meaningful reduction (≥50%) in monthly convulsive seizure frequency, including 6/14 patients in the FFA 0.7 mg/kg/day group. Overall, there were positive associations between the four individual treatment groups and the likelihood of reliable, clinically meaningful improvement in all BRIEF®-P indexes/composite (ISCI, p = 0.001; FI, p = 0.005; EMI, p = 0.040; GEC, p = 0.002). The FFA 0.7 mg/kg/day group showed a greater likelihood of reliable, clinically meaningful improvement than placebo in ISCI (50% vs 5%; p = 0.003), FI (36% vs 0%; p = 0.005), and GEC (36% vs 0%; p = 0.005). For EMI, the FFA 0.7 mg/kg/day group showed a greater likelihood of reliable, clinically meaningful improvement than the FFA 0.2 mg/kg/day group (29% vs 0%; p = 0.040), but did not meet the significance threshold compared with placebo (29% vs 5%; p = 0.064). There were no significant associations between treatment and the likelihood of reliable, clinically meaningful worsening (p > 0.05). SIGNIFICANCE: In this preschool-aged DS population with high baseline everyday EF impairment, FFA treatment for 14-15 weeks was associated with dose-dependent, clinically meaningful improvements in regulating behavior, emotion, cognition, and overall everyday EF. These clinically meaningful improvements in everyday EF were not entirely due to seizure frequency reduction, suggesting that FFA may have direct effects on everyday EF during the early formative years of neurodevelopment

    Fenfluramine for Treatment-Resistant Seizures in Patients With Dravet Syndrome Receiving Stiripentol-Inclusive Regimens A Randomized Clinical Trial

    Get PDF
    IMPORTANCE Fenfluramine treatment may reduce monthly convulsive seizure frequency in patients with Dravet syndrome who have poor seizure control with their current stiripentol-containing antiepileptic drug regimens. OBJECTIVE To determine whether fenfluramine reduced monthly convulsive seizure frequency relative to placebo in patients with Dravet syndrome who were taking stiripentol-inclusive regimens. DESIGN, SETTING, AND PARTICIPANTS This double-blind, placebo-controlled, parallel-group randomized clinical trial was conducted in multiple centers. Eligible patients were children aged 2 to 18 years with a confirmed clinical diagnosis of Dravet syndrome who were receiving stable, stiripentol-inclusive antiepileptic drug regimens. INTERVENTIONS Patients with 6 or more convulsive seizures during the 6-week baseline period were randomly assigned to receive fenfluramine, 0.4 mg/kg/d (maximum, 17 mg/d), or a placebo. After titration (3 weeks), patients’ assigned dosages were maintained for 12 additional weeks. Caregivers recorded seizures via a daily electronic diary. MAIN OUTCOMES AND MEASURES The primary efficacy end point was the change in mean monthly convulsive seizure frequency between fenfluramine and placebo during the combined titration and maintenance periods relative to baseline. RESULTS A total of 115 eligible patients were identified; of these, 87 patients (mean [SD], age 9.1 [4.8] years; 50 male patients [57%]; mean baseline frequency of seizures, approximately 25 convulsive seizures per month) were enrolled and randomized to fenfluramine, 0.4 mg/kg/d (n = 43) or placebo (n = 44). Patients treated with fenfluramine achieved a 54.0% (95% CI, 35.6%-67.2%; P < .001) greater reduction in mean monthly convulsive seizure frequency than those receiving the placebo. With fenfluramine, 54% of patients demonstrated a clinically meaningful (50%) reduction in monthly convulsive seizure frequency vs 5% with placebo (P < .001). The median (range) longest seizure-free interval was 22 (3.0-105.0) days with fenfluramine and 13 (1.0-40.0) days with placebo (P = .004). The most common adverse events were decreased appetite (19 patients taking fenfluramine [44%] vs 5 taking placebo [11%]), fatigue (11 [26%] vs 2 [5%]), diarrhea (10 [23%] vs 3 [7%]), and pyrexia (11 [26%] vs 4 [9%]). Cardiac monitoring demonstrated no clinical or echocardiographic evidence of valvular heart disease or pulmonary arterial hypertension. CONCLUSIONS AND RELEVANCE Fenfluramine demonstrated significant improvements in monthly convulsive seizure frequency in patients with Dravet syndrome whose conditions were insufficiently controlled with stiripentol-inclusive antiepileptic drug regimens. Fenfluramine was generally well tolerated. Fenfluramine may represent a new treatment option for Dravet syndrome. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT0292689

    Efficacy and safety of fenfluramine for the treatment of seizures associated with Lennox-Gastaut syndrome : a randomized clinical trial

    No full text
    IMPORTANCE: New treatment options are needed for patients with Lennox-Gastaut syndrome (LGS), a profoundly impairing, treatment-resistant, developmental and epileptic encephalopathy. OBJECTIVE: To evaluate the efficacy and safety of fenfluramine in patients with LGS. DESIGN, SETTING, AND PARTICIPANTS: This multicenter, double-blind, placebo-controlled, parallel-group randomized clinical trial was conducted from November 27, 2017, to October 25, 2019, and had a 20-week trial duration. Patients were enrolled at 65 study sites in North America, Europe, and Australia. Included patients were aged 2 to 35 years with confirmed diagnosis of LGS and experienced 2 or more drop seizures per week during the 4-week baseline. Using a modified intent-to-treat method, data analysis was performed from November 27, 2017, to October 25, 2019. The database lock date was January 30, 2020, and the date of final report was September 11, 2021. INTERVENTIONS: Patients were randomized to receive either a 0.7-mg/kg/d or 0.2-mg/kg/d (maximum 26 mg/d) dose of fenfluramine or placebo. After titration (2-week period), patients were taking their randomized dose for 12 additional weeks. MAIN OUTCOMES AND MEASURES: Primary efficacy end point was percentage change from baseline in drop seizure frequency in patients who received 0.7 mg/kg/d of fenfluramine vs placebo. RESULTS: A total of 263 patients (median [range] age, 13 [2-35] years; 146 male patients [56%]) were randomized to the 0.7-mg/kg/d fenfluramine group (n = 87), 0.2-mg/kg/d fenfluramine group (n = 89), or placebo group (n = 87). The median percentage reduction in frequency of drop seizures was 26.5 percentage points in the 0.7-mg/kg/d fenfluramine group, 14.2 percentage points in the 0.2-mg/kg/d fenfluramine group, and 7.6 percentage points in the placebo group. The trial met its primary efficacy end point: patients in the 0.7-mg/kg/d fenfluramine group achieved a −19.9 percentage points (95% CI, −31.0 to −8.7 percentage points; P = .001) estimated median difference in drop seizures from baseline vs placebo. More patients in the 0.7-mg/kg/d fenfluramine group achieved a 50% or greater response (22 of 87 [25%]; P = .02) vs placebo (9 of 87 [10%]). Site investigators and caregivers gave a much improved or very much improved rating on the Clinical Global Impression of Improvement scale to more patients in the 0.7-mg/kg/d fenfluramine group than patients in the placebo group (21 [26%] vs 5 [6%]; P = .001). The seizure subtype that appeared most responsive to fenfluramine was generalized tonic-clonic seizure (120 of 263 [46%]), with a decrease in frequency of 45.7% in the 0.7-mg/kg/d fenfluramine group and 58.2% in the 0.2-mg/kg/d fenfluramine group compared with an increase of 3.7% in the placebo group. Most common treatment-emergent adverse events included decreased appetite (59 [22%]), somnolence (33 [13%]), and fatigue (33 [13%]). No cases of valvular heart disease or pulmonary arterial hypertension were observed. CONCLUSIONS AND RELEVANCE: Results of this trial showed that, in patients with LGS, fenfluramine compared with placebo provided a significantly greater reduction in drop seizures and may be a particularly advantageous choice in patients who experience generalized tonic-clonic seizures. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0335520

    Fenfluramine in the treatment of Dravet syndrome: Results of a third randomized, placebo-controlled clinical trial

    No full text
    OBJECTIVE: To assess the safety and efficacy of fenfluramine in the treatment of convulsive seizures in patients with Dravet syndrome. METHODS: This multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial enrolled patients with Dravet syndrome, aged 2 to 18 years with poorly controlled convulsive seizures, provided they were not also receiving stiripentol. Eligible patients who had ≥6 convulsive seizures during the 6-week baseline period were randomized to placebo, fenfluramine 0.2 mg/kg/day, or fenfluramine 0.7 mg/kg/day (1:1:1 ratio) administered orally (maximum dose, 26 mg/day). Doses were titrated over 2 weeks and maintained for an additional 12 weeks. The primary endpoint was a comparison of the monthly convulsive seizure (MCSF) frequency during baseline and during the combined titration-maintenance period in patients given fenfluramine 0.7 mg/kg/day vs. patients given placebo. RESULTS: 169 patients were screened and 143 were randomized to treatment. Mean age was 9.3±4.7 years (±SD), 51% were male, and median baseline MCSF in the 3 groups ranged from 12.7-18.0 per 28 days. Patients treated with fenfluramine 0.7 mg/kg/day demonstrated a 64.8% (95% CI, 51.8%-74.2%) greater reduction in MCSF compared with placebo (P15% in any group) were decreased appetite, somnolence, pyrexia, and decreased blood glucose. All occurred in higher frequency in fenfluramine groups than placebo. No evidence of valvular heart disease or pulmonary artery hypertension was detected. SIGNIFICANCE: The results of this third phase 3 clinical trial provide further evidence of the magnitude and durability of the anti-seizure response of fenfluramine in children with Dravet syndrome

    Fenfluramine for Treatment-Resistant Seizures in Patients With Dravet Syndrome Receiving Stiripentol-Inclusive Regimens A Randomized Clinical Trial

    No full text
    IMPORTANCE Fenfluramine treatment may reduce monthly convulsive seizure frequency in patients with Dravet syndrome who have poor seizure control with their current stiripentol-containing antiepileptic drug regimens. OBJECTIVE To determine whether fenfluramine reduced monthly convulsive seizure frequency relative to placebo in patients with Dravet syndrome who were taking stiripentol-inclusive regimens. DESIGN, SETTING, AND PARTICIPANTS This double-blind, placebo-controlled, parallel-group randomized clinical trial was conducted in multiple centers. Eligible patients were children aged 2 to 18 years with a confirmed clinical diagnosis of Dravet syndrome who were receiving stable, stiripentol-inclusive antiepileptic drug regimens. INTERVENTIONS Patients with 6 or more convulsive seizures during the 6-week baseline period were randomly assigned to receive fenfluramine, 0.4 mg/kg/d (maximum, 17 mg/d), or a placebo. After titration (3 weeks), patients’ assigned dosages were maintained for 12 additional weeks. Caregivers recorded seizures via a daily electronic diary. MAIN OUTCOMES AND MEASURES The primary efficacy end point was the change in mean monthly convulsive seizure frequency between fenfluramine and placebo during the combined titration and maintenance periods relative to baseline. RESULTS A total of 115 eligible patients were identified; of these, 87 patients (mean [SD], age 9.1 [4.8] years; 50 male patients [57%]; mean baseline frequency of seizures, approximately 25 convulsive seizures per month) were enrolled and randomized to fenfluramine, 0.4 mg/kg/d (n = 43) or placebo (n = 44). Patients treated with fenfluramine achieved a 54.0% (95% CI, 35.6%-67.2%; P < .001) greater reduction in mean monthly convulsive seizure frequency than those receiving the placebo. With fenfluramine, 54% of patients demonstrated a clinically meaningful (50%) reduction in monthly convulsive seizure frequency vs 5% with placebo (P < .001). The median (range) longest seizure-free interval was 22 (3.0-105.0) days with fenfluramine and 13 (1.0-40.0) days with placebo (P = .004). The most common adverse events were decreased appetite (19 patients taking fenfluramine [44%] vs 5 taking placebo [11%]), fatigue (11 [26%] vs 2 [5%]), diarrhea (10 [23%] vs 3 [7%]), and pyrexia (11 [26%] vs 4 [9%]). Cardiac monitoring demonstrated no clinical or echocardiographic evidence of valvular heart disease or pulmonary arterial hypertension. CONCLUSIONS AND RELEVANCE Fenfluramine demonstrated significant improvements in monthly convulsive seizure frequency in patients with Dravet syndrome whose conditions were insufficiently controlled with stiripentol-inclusive antiepileptic drug regimens. Fenfluramine was generally well tolerated. Fenfluramine may represent a new treatment option for Dravet syndrome. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT0292689

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field
    corecore