503 research outputs found

    Static quantum corrections to the Schwarzschild spacetime

    Full text link
    We study static quantum corrections of the Schwarzschild metric in the Boulware vacuum state. Due to the absence of a complete analytic expression for the full semiclassical Einstein equations we approach the problem by considering the s-wave approximation and solve numerically the associated backreaction equations. The solution, including quantum effects due to pure vacuum polarization, is similar to the classical Schwarzschild solution up to the vicinity of the classical horizon. However, the radial function has a minimum at a time-like surface close to the location of the classical event horizon. There the g_{00} component of the metric reaches a very small but non-zero value. The analysis unravels how a curvature singularity emerges beyond this bouncing point. We briefly discuss the physical consequences of these results by extrapolating them to a dynamical collapsing scenario.Comment: 10 pages; Talk given at QG05, Cala Gonone (Italy), September 200

    Model-Independent Comparisons of Pulsar Timings to Scalar-Tensor Gravity

    Full text link
    Observations of pulsar timing provide strong constraints on scalar-tensor theories of gravity, but these constraints are traditionally quoted as limits on the microscopic parameters (like the Brans-Dicke coupling, for example) that govern the strength of scalar-matter couplings at the particle level in particular models. Here we present fits to timing data for several pulsars directly in terms of the phenomenological couplings (masses, scalar charges, moment of inertia sensitivities and so on) of the stars involved, rather than to the more microscopic parameters of a specific model. For instance, for the double pulsar PSR J0737-3039A/B we find at the 68% confidence level that the masses are bounded by 1.28 < m_A/m_sun < 1.34 and 1.19 < m_B/m_sun < 1.25, while the scalar-charge to mass ratios satisfy |a_A| < 0.21, |a_B| < 0.21 and |a_B - a_A| < 0.002$. These constraints are independent of the details of the scalar tensor model involved, and of assumptions about the stellar equations of state. Our fits can be used to constrain a broad class of scalar tensor theories by computing the fit quantities as functions of the microscopic parameters in any particular model. For the Brans-Dicke and quasi-Brans-Dicke models, the constraints obtained in this manner are consistent with those quoted in the literature.Comment: 19 pages, 7 figure

    Constraints on scalar-tensor theories of gravity from observations

    Full text link
    In spite of their original discrepancy, both dark energy and modified theory of gravity can be parameterized by the effective equation of state (EOS) ω\omega for the expansion history of the Universe. A useful model independent approach to the EOS of them can be given by so-called Chevallier-Polarski-Linder (CPL) parametrization where two parameters of it (ω0\omega_{0} and ωa\omega_{a}) can be constrained by the geometrical observations which suffer from degeneracies between models. The linear growth of large scale structure is usually used to remove these degeneracies. This growth can be described by the growth index parameter Îł\gamma and it can be parameterized by Îł0+Îła(1−a)\gamma_{0} + \gamma_{a} (1 - a) in general. We use the scalar-tensor theories of gravity (STG) and show that the discernment between models is possible only when Îła\gamma_a is not negligible. We show that the linear density perturbation of the matter component as a function of redshift severely constrains the viable subclasses of STG in terms of ω\omega and Îł\gamma. From this method, we can rule out or prove the viable STG in future observations. When we use Z(ϕ)=1Z(\phi) =1, FF shows the convex shape of evolution in a viable STG model. The viable STG models with Z(ϕ)=1Z(\phi) = 1 are not distinguishable from dark energy models when we strongly limit the solar system constraint.Comment: 19 pages, 20 figures, 2 tables, submitted to JCA

    Insulin but not phorbol ester treatment increases phosphorylation of vinculin by protein kinase C in BC3H-1 myocytes

    Get PDF
    AbstractInsulin was found to increase protein kinase C activity in BC3H-1 myocytes as determined by in vitro phosphorylation of both a lysine-rich histone fraction (histone III-S) and vinculin. TPA treatment for 20 min or 18 h provoked an apparent loss of histone-directed but not vinculin-directed phosphorylation by cytosolic C-kinase. Thus, chronic TPA-induced ‘desensitization’ or ‘depletion’ of cellular protein kinase C is more apparent than real, and is not a valid means for evaluating the role of C-kinase in hormone action

    Mapping the CMB Sky: The BOOMERANG experiment

    Get PDF
    We describe the BOOMERanG experiment, a stratospheric balloon telescope intended to measure the Cosmic Microwave Background anisotropy at angular scales between a few degrees and ten arcminutes. The experiment has been optimized for a long duration (7 to 14 days) flight circumnavigating Antarctica at the end of 1998. A test flight was performed on Aug.30, 1997 in Texas. The level of performance achieved in the test flight was satisfactory and compatible with the requirements for the long duration flight.Comment: 11 pages, 6 figure

    Solution generating in scalar-tensor theories with a massless scalar field and stiff perfect fluid as a source

    Get PDF
    We present a method for generating solutions in some scalar-tensor theories with a minimally coupled massless scalar field or irrotational stiff perfect fluid as a source. The method is based on the group of symmetries of the dilaton-matter sector in the Einstein frame. In the case of Barker's theory the dilaton-matter sector possesses SU(2) group of symmetries. In the case of Brans-Dicke and the theory with "conformal coupling", the dilaton- matter sector has SL(2,R)SL(2,R) as a group of symmetries. We describe an explicit algorithm for generating exact scalar-tensor solutions from solutions of Einstein-minimally-coupled-scalar-field equations by employing the nonlinear action of the symmetry group of the dilaton-matter sector. In the general case, when the Einstein frame dilaton-matter sector may not possess nontrivial symmetries we also present a solution generating technique which allows us to construct exact scalar-tensor solutions starting with the solutions of Einstein-minimally-coupled-scalar-field equations. As an illustration of the general techniques, examples of explicit exact solutions are constructed. In particular, we construct inhomogeneous cosmological scalar-tensor solutions whose curvature invariants are everywhere regular in space-time. A generalization of the method for scalar-tensor-Maxwell gravity is outlined.Comment: 10 pages,Revtex; v2 extended version, new parts added and some parts rewritten, results presented more concisely, some simple examples of homogeneous solutions replaced with new regular inhomogeneous solutions, typos corrected, references and acknowledgements added, accepted for publication in Phys.Rev.

    First Estimations of Cosmological Parameters From BOOMERANG

    Get PDF
    The anisotropy of the cosmic microwave background radiation contains information about the contents and history of the universe. We report new limits on cosmological parameters derived from the angular power spectrum measured in the first Antarctic flight of the BOOMERANG experiment. Within the framework of inflation-motivated adiabatic cold dark matter models, and using only weakly restrictive prior probabilites on the age of the universe and the Hubble expansion parameter hh, we find that the curvature is consistent with flat and that the primordial fluctuation spectrum is consistent with scale invariant, in agreement with the basic inflation paradigm. We find that the data prefer a baryon density Ωbh2\Omega_b h^2 above, though similar to, the estimates from light element abundances and big bang nucleosynthesis. When combined with large scale structure observations, the BOOMERANG data provide clear detections of both dark matter and dark energy contributions to the total energy density Ωtot\Omega_{\rm {tot}}, independent of data from high redshift supernovae.Comment: As submitted to PRD, revised longer version with an additional figur

    Noise Properties of the BOOMERANG Instrument

    Get PDF
    In this paper we report a short description of the BOOMERANG experiment explaining his scientific goal and the technologies implied. We concentrate then on the analysis of the noise properties discussing in particular the scan synchronous noise. Finally we present the calibration technique and the sensitivity of all the channels
    • 

    corecore