102 research outputs found

    The two-point correlation function of randomly distributed Lyman alpha clouds

    Get PDF
    It is often assumed that Ly-alpha forest clouds are randomly distributed, intergalactic objects that are highly ionized by the UV background produced by quasars. If these assumptions are true, fluctuations in the UV background should produce a nonzero two point correlation function in the Ly-alpha forest. This effect, which is really just a generalization of the proximity effect, is more significant at high redshift (z is approximately 3-4) because the mean free path for UV photons is smaller there, and the fluctuations correspondingly larger. This effect was studied using both the semi-analytic techniques of Zuo's recent papers and Monte Carlo simulations. The correlation function is expected to have a small yet potentially measurable amplitude that is consistent with current upper limits. Furthermore, the signature of this effect is distinctive because the nonzero correlation function extends over the photon mean free path, which is larger than the expected scale of large-scale structure. Observations or upper limits on this effect could provide information about the source of the ionizing background at high redshifts and the nature of the Ly-alpha forest clouds

    Sub-mm Galaxies in Cosmological Simulations

    Get PDF
    We study the predicted sub-mm emission from massive galaxies in a Lambda-CDM universe, using hydrodynamic cosmological simulations. Assuming that most of the emission from newly formed stars is absorbed and reradiated in the rest-frame far-IR, we calculate the number of galaxies that would be detected in sub-mm surveys conducted with SCUBA. The predicted number counts are strongly dependent on the assumed dust temperature and emissivity law. With plausible choices for SED parameters (e.g., T=35 K, beta=1.0), the simulation predictions reproduce the observed number counts above ~ 1 mJy. The sources have a broad redshift distribution with median z ~ 2, in reasonable agreement with observational constraints. However, the predicted count distribution may be too steep at the faint end, and the fraction of low redshift objects may be larger than observed. In this physical model of the sub-mm galaxy population, the objects detected in existing surveys consist mainly of massive galaxies (several M_*) forming stars fairly steadily over timescales ~ 10^8-10^9 years, at moderate rates ~100 Msun/yr. The typical descendants of these sub-mm sources are even more massive galaxies, with old stellar populations, found primarily in dense environments. While the resolution of our simulations is not sufficient to determine galaxy morphologies, these properties support the proposed identification of sub-mm sources with massive ellipticals in the process of formation. The most robust and distinctive prediction of this model, stemming directly from the long timescale and correspondingly moderate rate of star formation, is that the far-IR SEDs of SCUBA sources have a relative high 850 micron luminosity for a given bolometric luminosity. [Abridged]Comment: Submitted to ApJ. 34 pages including 8 PS figure

    Galactic outflows and the kinematics of damped Lyman alpha absorbers

    Get PDF
    The kinematics of damped Lyman alpha absorbers (DLAs) are difficult to reproduce in hierarchical galaxy formation models, particularly the preponderance of wide systems. We investigate DLA kinematics at z=3 using high-resolution cosmological hydrodynamical simulations that include a heuristic model for galactic outflows. Without outflows, our simulations fail to yield enough wide DLAs, as in previous studies. With outflows, predicted DLA kinematics are in much better agreement with observations. Comparing two outflow models, we find that a model based on momentum-driven wind scalings provides the best match to the observed DLA kinematic statistics of Prochaska & Wolfe. In this model, DLAs typically arise a few kpc away from galaxies that would be identified in emission. Narrow DLAs can arise from any halo and galaxy mass, but wide ones only arise in halos with mass >10^11 Mo, from either large central or small satellite galaxies. This implies that the success of this outflow model originates from being most efficient at pushing gas out from small satellite galaxies living in larger halos. This increases the cross-section for large halos relative to smaller ones, thereby yielding wider kinematics. Our simulations do not include radiative transfer effects or detailed metal tracking, and outflows are modeled heuristically, but they strongly suggest that galactic outflows are central to understanding DLA kinematics. An interesting consequence is that DLA kinematics may place constraints on the nature and efficiency of gas ejection from high-z galaxies.Comment: submitted to MNRA

    Generation of mock tidal streams

    Full text link
    In this paper we discuss a method for the generation of mock tidal streams. Using an ensemble of simulations in an isochrone potential where the actions and frequencies are known, we derive an empirical recipe for the evolving satellite mass and the corresponding mass loss rate, and the ejection conditions of the stream material. The resulting stream can then be quickly generated either with direct orbital integration, or by using the action-angle formalism. The model naturally produces streaky features within the stream. These are formed due to the radial oscillation of the progenitor and the bursts of stars emitted near pericenter, rather than clumping at particular oscillation phases as sometimes suggested. When detectable, these streaky features are a reliable diagnostic for the stream's direction of motion and encode other information on the progenitor and its orbit. We show several tests of the recipe in alternate potentials, including a case with a chaotic progenitor orbit which displays a marked effect on the width of the stream. Although the specific ejection recipe may need adjusting when elements such as the orbit or satellite density profile are changed significantly, our examples suggest that model tidal streams can be quickly and accurately generated by models of this general type for use in Bayesian sampling.Comment: 20 pages, 11 figures, 1 table; submitted to MNRA

    Intergalactic Helium Absorption toward High-Redshift Quasars

    Get PDF
    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons

    Parametrising Star Formation Histories

    Full text link
    We examine the star formation histories (SFHs) of galaxies in smoothed particle hydrodynamics (SPH) simulations, compare them to parametric models that are commonly used in fitting observed galaxy spectral energy distributions, and examine the efficacy of these parametric models as practical tools for recovering the physical parameters of galaxies. The commonly used tau-model, with SFR ~ exp(-t/tau), provides a poor match to the SFH of our SPH galaxies, with a mismatch between early and late star formation that leads to systematic errors in predicting colours and stellar mass-to-light ratios. A one-parameter lin-exp model, with SFR ~ t*exp(-t/tau), is much more successful on average, but it fails to match the late-time behavior of the bluest, most actively star-forming galaxies and the passive, "red and dead" galaxies. We introduce a 4-parameter model, which transitions from lin-exp to a linear ramp after a transition time, which describes our simulated galaxies very well. We test the ability of these parametrised models to recover (at z=0, 0.5, and 1) the stellar mass-to-light ratios, specific star formation rates, and stellar population ages from the galaxy colours, computed from the full SPH star formation histories using the FSPS code of Conroy et al. (2009). Fits with tau-models systematically overestimate M/L by ~ 0.2 dex, overestimate population ages by ~ 1-2 Gyr, and underestimate sSFR by ~ 0.05 dex. Fits with lin-exp are less biased on average, but the 4-parameter model yields the best results for the full range of galaxies. Marginalizing over the free parameters of the 4-parameter model leads to slightly larger statistical errors than 1-parameter fits but essentially removes all systematic biases, so this is our recommended procedure for fitting real galaxies.Comment: 28 pages, 18 figure

    Connecting the Milky Way potential profile to the orbital timescales and spatial structure of the Sagittarius Stream

    Get PDF
    Recent maps of the halo using RR Lyrae from Pan-STARRS1 have clearly depicted the spatial structure of the Sagittarius stream. These maps show the leading and trailing stream apocenters differ in galactocentric radius by a factor of two, and also resolve substructure in the stream at these apocenters. Here we present dynamical models that reproduce these features of the stream in simple Galactic potentials. We find that debris at the apocenters must be dynamically young, in the sense of being stripped off in the last two pericentric passages, while the Sagittarius dwarf is currently experiencing a third passage. The ratio of apocenters is sensitive to both dynamical friction and the outer slope of the Galactic rotation curve. These dependences can be understood with simple regularities connecting the apocentric radii, circular velocities, and orbital period of the progenitor. The effect of dynamical friction on the stream can be constrained using substructure within the leading apocenter. Our ensembles of models are not intended as statistically proper fits to the stream. Nevertheless, out of the range of models we consider, we consistently find the mass within 100 kpc to be 7×1011M\sim 7 \times 10^{11} \, M_{\odot}, with a nearly flat rotation curve between 50 and 100 kpc. This points to a more extended Galactic halo than assumed in some current models. As in previous work, we find prolate or triaxial halos ease agreement with the track of the leading stream. We display the behavior of our models in various observational spaces and characterize the substructure expected within the stream. In particular, the young trailing stream visible near trailing apocenter should exhibit a tight trend of velocity with distance separate from the older debris, and we suggest that this will serve as an especially useful probe of the outer Galactic potential.Comment: Submitted to MNRA
    corecore