142 research outputs found
Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin receptor genes
Neurons in the geniculate ganglion, like those in other sensory ganglia, are dependent on neurotrophins for survival. Most geniculate ganglion neurons innervate taste buds in two regions of the tongue and two regions of the palate; the rest are cutaneous nerves to the skin of the ear. We investigated the expression of four neurotrophins, nerve growth factor (NGF), brain‐derived neurotrophic factor (BDNF), neurotrophin 3 (NT‐3), and NT‐4, and five neurotrophin receptors, trkA, trkB, trkC, p75, and truncated trkB (Trn‐B) in single sensory neurons of the adult rat geniculate ganglion associated with the five innervation fields. For fungiform papillae, a glass pipette containing biotinylated dextran was placed over the target papilla and the tracer was iontophoresed into the target papilla. For the other target fields, Fluoro‐Gold was microinjected. After 3 days, geniculate ganglia were harvested, sectioned, and treated histochemically (for biotinylated dextran) or immunohistochemically (for Fluoro‐Gold) to reveal the neurons containing the tracer. Single labeled neurons were harvested from the slides and subjected to RNA amplification and RT‐PCR to reveal the neurotrophin or neurotrophin receptor genes that were expressed. Neurons projecting from the geniculate ganglion to each of the five target fields had a unique expression profile of neurotrophin and neurotrophic receptor genes. Several individual neurons expressed more than one neurotrophin receptor or more than one neurotrophin gene. Although BDNF is significantly expressed in taste buds, its primary high affinity receptor, trkB, was not prominently expressed in the neurons. The results are consistent with the interpretation that at least some, perhaps most, of the trophic influence on the sensory neurons is derived from the neuronal somata, and the trophic effect is paracrine or autocrine, rather than target derived. The BDNF in the taste bud may also act in a paracrine or autocrine manner on the trkB expressed in taste buds, as shown by others. © 2004 Wiley‐Liss, Inc
He Scattering from Random Adsorbates, Disordered Compact Islands and Fractal Submonolayers: Intensity Manifestations of Surface Disorder
A theoretical study is made on He scattering from three fundamental classes
of disordered ad-layers: (a) Translationally random adsorbates, (b) disordered
compact islands and (c) fractal submonolayers. The implications of the results
to experimental studies of He scattering from disordered surfaces are
discussed, and a combined experimental-theoretical study is made for Ag
submonolayers on Pt(111). Some of the main theoretical findings are: (1)
Structural aspects of the calculated intensities from translationally random
clusters were found to be strongly correlated with those of individual
clusters. (2) Low intensity Bragg interference peaks appear even for scattering
from very small ad-islands, and contain information on the ad-island local
electron structure. (3) For fractal islands, just as for islands with a
different structure, the off-specular intensity depends on the parameters of
the He/Ag interaction, and does not follow a universal power law as previously
proposed in the literature. In the experimental-theoretical study of Ag on
Pt(111), we use first experimental He scattering data from low-coverage (single
adsorbate) systems to determine an empirical He/Ag-Pt potential of good
quality. Then, we carry out He scattering calculations for high coverage and
compare with experiments. The conclusions are that the actual experimental
phase corresponds to small compact Ag clusters of narrow size distribution,
translationally disordered on the surface.Comment: 36 double-spaced pages, 10 figures; accepted by J. Chem. Phys.,
scheduled to appear March 8. More info available at
http://www.fh.huji.ac.il/~dani
Labeling of Sweet Taste Binding Sites using a Colloidal Gold-Labeled Sweet Protein, Thaumatin
Thaumatin, an intensely sweet tasting protein, was bound to colloidal gold and applied to the taste bud-bearing foliate papillae of Rhesus monkeys. Examination of thin sections of taste pores showed that gold particles were bound to merocrine secretions of Type I taste bud cells, to some cell remnants of lysed cells, and, most importantly, to small, membrane bounded blebs of cytoplasm. These blebs are thought to be shed into the pore from the tips of taste bud cell microvilli, particularly those arising from Type II cells. The binding of gold particles to microvillus tips and to the blebs suggest that this may be an important means by which taste bud cells rid themselves of taste stimulus-receptor complexes
He Scattering from Compact Clusters and from Diffusion-Limited Aggregates on Surfaces: Observable Signatures of Structure
The angular intensity distribution of He beams scattered from compact
clusters and from diffusion limited aggregates, epitaxially grown on metal
surfaces, is investigated theoretically. The purpose is twofold: to distinguish
compact cluster structures from diffusion limited aggregates, and to find
observable {\em signatures} that can characterize the compact clusters at the
atomic level of detail. To simplify the collision dynamics, the study is
carried out in the framework of the sudden approximation, which assumes that
momentum changes perpendicular to the surface are large compared with momentum
transfer due to surface corrugation. The diffusion limited aggregates on which
the scattering calculations were done, were generated by kinetic Monte Carlo
simulations. It is demonstrated, by focusing on the example of compact Pt
Heptamers, that signatures of structure of compact clusters may indeed be
extracted from the scattering distribution. These signatures enable both an
experimental distinction between diffusion limited aggregates and compact
clusters, and a determination of the cluster structure. The characteristics
comprising the signatures are, to varying degrees, the Rainbow, Fraunhofer,
specular and constructive interference peaks, all seen in the intensity
distribution. It is also shown, how the distribution of adsorbate heights above
the metal surface can be obtained by an analysis of the specular peak
attenuation. The results contribute to establishing He scattering as a powerful
tool in the investigation of surface disorder and epitaxial growth on surfaces,
alongside with STM.Comment: 41 pages, 16 postscript figures. For more details see
http://www.fh.huji.ac.il/~dan
Lingual deficits in neurotrophin double knockout mice
Brain-derived neurotrophic factor (BDNF) and Neurotrophin 3 (NT-3) are members of the neurotrophin family and are expressed in the developing and adult tongue papillae. BDNF null-mutated mice exhibit specific impairments related to innervation and development of the gustatory system while NT-3 null mice have deficits in their lingual somatosensory innervation. To further evaluate the functional specificity of these neurotrophins in the peripheral gustatory system, we generated double BDNF/NT-3 knockout mice and compared the phenotype to BDNF −/− and wild-type mice. Taste papillae morphology was severely distorted in BDNF −/− x NT-3 −/− mice compared to single BDNF −/− and wild-type mice. The deficits were found throughout the tongue and all gustatory papillae. There was a significant loss of fungiform papillae and the papillae were smaller in size compared to BDNF −/− and wild-type mice. Circumvallate papillae in the double knockouts were smaller and did not contain any intraepithelial nerve fibers. BDNF −/− x NT-3 −/− mice exhibited additive losses in both somatosensory and gustatory innervation indicating that BDNF and NT-3 exert specific roles in the innervation of the tongue. However, the additional loss of fungiform papillae and taste buds in BDNF −/− x NT-3 −/− mice compared to single BDNF knockout mice indicate a synergistic functional role for both BDNF-dependent gustatory and NT-3-dependent somatosensory innervations in taste bud and taste papillae innervation and development.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47465/1/11068_2005_Article_3330.pd
Chemoreception Regulates Chemical Access to Mouse Vomeronasal Organ: Role of Solitary Chemosensory Cells
Controlling stimulus access to sensory organs allows animals to optimize sensory reception and prevent damage. The vomeronasal organ (VNO) detects pheromones and other semiochemicals to regulate innate social and sexual behaviors. This semiochemical detection generally requires the VNO to draw in chemical fluids, such as bodily secretions, which are complex in composition and can be contaminated. Little is known about whether and how chemical constituents are monitored to regulate the fluid access to the VNO. Using transgenic mice and immunolabeling, we found that solitary chemosensory cells (SCCs) reside densely at the entrance duct of the VNO. In this region, most of the intraepithelial trigeminal fibers innervate the SCCs, indicating that SCCs relay sensory information onto the trigeminal fibers. These SCCs express transient receptor potential channel M5 (TRPM5) and the phospholipase C (PLC) β2 signaling pathway. Additionally, the SCCs express choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) for synthesizing and packaging acetylcholine, a potential transmitter. In intracellular Ca2+ imaging, the SCCs responded to various chemical stimuli including high concentrations of odorants and bitter compounds. The responses were suppressed significantly by a PLC inhibitor, suggesting involvement of the PLC pathway. Further, we developed a quantitative dye assay to show that the amount of stimulus fluid that entered the VNOs of behaving mice is inversely correlated to the concentration of odorous and bitter substances in the fluid. Genetic knockout and pharmacological inhibition of TRPM5 resulted in larger amounts of bitter compounds entering the VNOs. Our data uncovered that chemoreception of fluid constituents regulates chemical access to the VNO and plays an important role in limiting the access of non-specific irritating and harmful substances. Our results also provide new insight into the emerging role of SCCs in chemoreception and regulation of physiological actions
Accelerated turnover of taste bud cells in mice deficient for the cyclin-dependent kinase inhibitor p27Kip1
Background: Mammalian taste buds contain several specialized cell types that coordinately respond to tastants and communicate with sensory nerves. While it has long been appreciated that these cells undergo continual turnover, little is known concerning how adequate numbers of cells are generated and maintained. The cyclin-dependent kinase inhibitor p27Kip1 has been shown to influence cell number in several developing tissues, by coordinating cell cycle exit during cell differentiation. Here, we investigated its involvement in the control of taste cell replacement by examining adult mice with targeted ablation of the p27Kip1 gene.Results: Histological and morphometric analyses of fungiform and circumvallate taste buds reveal no structural differences between wild-type and p27Kip1-null mice. However, when examined in functional assays, mutants show substantial proliferative changes. In BrdU incorporation experiments, more S-phase-labeled precursors appear within circumvallate taste buds at 1 day post-injection, the earliest time point examined. After 1 week, twice as many labeled intragemmal cells are present, but numbers return to wild-type levels by 2 weeks. Mutant taste buds also contain more TUNEL-labeled cells and 50% more apoptotic bodies than wild-type controls. In normal mice, p27 Kip1 is evident in a subset of receptor and presynaptic taste cells beginning about 3 days post-injection, correlating with the onset of taste cell maturation. Loss of gene function, however, does not alter the proportions of distinct immunohistochemically-identified cell types.Conclusions: p27Kip1 participates in taste cell replacement by regulating the number of precursor cells available for entry into taste buds. This is consistent with a role for the protein in timing cell cycle withdrawal in progenitor cells. The equivalence of mutant and wild-type taste buds with regard to cell number, cell types and general structure contrasts with the hyperplasia and tissue disruption seen in certain developing p27Kip1-null sensory organs, and may reflect a compensatory capability inherent in the regenerative taste system
Sour Ageusia in Two Individuals Implicates Ion Channels of the ASIC and PKD Families in Human Sour Taste Perception at the Anterior Tongue
BACKGROUND:The perception of sour taste in humans is incompletely understood at the receptor cell level. We report here on two patients with an acquired sour ageusia. Each patient was unresponsive to sour stimuli, but both showed normal responses to bitter, sweet, and salty stimuli. METHODS AND FINDINGS:Lingual fungiform papillae, containing taste cells, were obtained by biopsy from the two patients, and from three sour-normal individuals, and analyzed by RT-PCR. The following transcripts were undetectable in the patients, even after 50 cycles of amplification, but readily detectable in the sour-normal subjects: acid sensing ion channels (ASICs) 1a, 1beta, 2a, 2b, and 3; and polycystic kidney disease (PKD) channels PKD1L3 and PKD2L1. Patients and sour-normals expressed the taste-related phospholipase C-beta2, the delta-subunit of epithelial sodium channel (ENaC) and the bitter receptor T2R14, as well as beta-actin. Genomic analysis of one patient, using buccal tissue, did not show absence of the genes for ASIC1a and PKD2L1. Immunohistochemistry of fungiform papillae from sour-normal subjects revealed labeling of taste bud cells by antibodies to ASICs 1a and 1beta, PKD2L1, phospholipase C-beta2, and delta-ENaC. An antibody to PKD1L3 labeled tissue outside taste bud cells. CONCLUSIONS:These data suggest a role for ASICs and PKDs in human sour perception. This is the first report of sour ageusia in humans, and the very existence of such individuals ("natural knockouts") suggests a cell lineage for sour that is independent of the other taste modalities
- …