683 research outputs found

    Solar System experiments do not yet veto modified gravity models

    Get PDF
    The dynamical equivalence between modified and scalar-tensor gravity theories is revisited and it is concluded that it breaks down in the limit to general relativity. A gauge-independent analysis of cosmological perturbations in both classes of theories lends independent support to this conclusion. As a consequence, the PPN formalism of scalar-tensor gravity and Solar System experiments do not veto modified gravity, as previously thought.Comment: 7 pages, latex, submitted to Phys. Rev.

    A Singularity-Free Cosmological Model with a Conformally Coupled Scalar Field

    Get PDF
    We explore the possibility of describing our universe with a singularity--free, closed, spatially homogeneous and isotropic cosmological model, using only general relativity and a suitable equation of state which produces an inflationary era. A phase transition to a radiation--dominated era occurs as a consequence of boundary conditions expressing the assumption that the temperature cannot exceed the Planck value. We find that over a broad range of initial conditions, the predicted value of the Hubble parameter is approximately 4747 km⋅\cdot~s−1⋅^{-1}\cdot~Mpc−1^{-1}. Inflation is driven by a scalar field, which must be conformally coupled to the curvature if the Einstein equivalence principle has to be satisfied. The form of the scalar field potential is derived, instead of being assumed a priori.Comment: 19 pages, figures and tables available from the author

    A viability criterion for modified gravity with an extra force

    Full text link
    A recently proposed theory of modified gravity with an explicit ``anomalous'' coupling of the Ricci curvature to matter is discussed, and an inequality is derived which expresses a necessary and sufficient condition to avoid the notorius Dolgov-Kawasaki instability.Comment: 4 latex pages, to appear in Phys. Rev.

    Scalar-tensor cosmologies: fixed points of the Jordan frame scalar field

    Full text link
    We study the evolution of homogeneous and isotropic, flat cosmological models within the general scalar-tensor theory of gravity with arbitrary coupling function and potential. After introducing the limit of general relativity we describe the details of the phase space geometry. Using the methods of dynamical systems for the decoupled equation of the Jordan frame scalar field we find the fixed points of flows in two cases: potential domination and matter domination. We present the conditions on the mathematical form of the coupling function and potential which determine the nature of the fixed points (attractor or other). There are two types of fixed points, both are characterized by cosmological evolution mimicking general relativity, but only one of the types is compatible with the Solar System PPN constraints. The phase space structure should also carry over to the Einstein frame as long as the transformation between the frames is regular which however is not the case for the latter (PPN compatible) fixed point.Comment: 21 pages, 4 figures, some comments and references adde

    Reconstructing the universe history, from inflation to acceleration, with phantom and canonical scalar fields

    Full text link
    We consider the reconstruction technique in theories with a single or multiple (phantom and/or canonical) scalar fields. With the help of several examples, it is demonstrated explicitly that the universe expansion history, unifying early-time inflation and late-time acceleration, can be realized in scalar-tensor gravity. This is generalized to the theory of a scalar field coupled non-minimally to the curvature and to a Brans-Dicke-like theory. Different examples of unification of inflation with cosmic acceleration, in which de Sitter, phantom, and quintessence type fields play the fundamental role--in different combinations--are worked out. Specifically, the frame dependence and stability properties of de Sitter space scalar field theory are studied. Finally, for two-scalar theories, the late-time acceleration and early-time inflation epochs are successfully reconstructed, in realistic situations in which the more and more stringent observational bounds are satisfied, using the freedom of choice of the scalar field potential, and of the kinetic factor.Comment: 22 pages, revtex, no figures, version to appear in Phys. Rev.
    • …
    corecore