63 research outputs found

    Correction to:On the Role of a Conserved Methionine in the Na+-Coupling Mechanism of a Neurotransmitter Transporter Homolog (Neurochemical Research, (2022), 47, 1, (163-175), 10.1007/s11064-021-03253-w)

    Get PDF
    After publication, the authors realized that the version of the supplementary information that was originally submitted was incomplete in that it omitted results examining alternative NBFIX corrections to the force field. Those data have now been added as Supplementary Fig. S3 and they reaffirm the conclusions of the manuscript. In addition, the legend to Fig. 3b should read: “Using the NBFIX correction of Na+- methionine interactions, all Na+ ions and the substrate remain stably bound throughout the trajectory. See also Fig. S3.

    On the Role of a Conserved Methionine in the Na+-Coupling Mechanism of a Neurotransmitter Transporter Homolog

    Get PDF
    Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs Glt(Ph) and Glt(Tk), revealed that this methionine is involved in the coordination of one of the three Na(+) ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of Glt(Ph) showing that mutations of this methionine diminish the binding cooperativity between substrates and Na(+). It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of Glt(Tk) using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s11064-021-03253-w) contains supplementary material, which is available to authorized users

    APBSmem: A Graphical Interface for Electrostatic Calculations at the Membrane

    Get PDF
    Electrostatic forces are one of the primary determinants of molecular interactions. They help guide the folding of proteins, increase the binding of one protein to another and facilitate protein-DNA and protein-ligand binding. A popular method for computing the electrostatic properties of biological systems is to numerically solve the Poisson-Boltzmann (PB) equation, and there are several easy-to-use software packages available that solve the PB equation for soluble proteins. Here we present a freely available program, called APBSmem, for carrying out these calculations in the presence of a membrane. The Adaptive Poisson-Boltzmann Solver (APBS) is used as a back-end for solving the PB equation, and a Java-based graphical user interface (GUI) coordinates a set of routines that introduce the influence of the membrane, determine its placement relative to the protein, and set the membrane potential. The software Jmol is embedded in the GUI to visualize the protein inserted in the membrane before the calculation and the electrostatic potential after completing the computation. We expect that the ease with which the GUI allows one to carry out these calculations will make this software a useful resource for experimenters and computational researchers alike. Three examples of membrane protein electrostatic calculations are carried out to illustrate how to use APBSmem and to highlight the different quantities of interest that can be calculated

    Genomic Characterization of Haemophilus parasuis SH0165, a Highly Virulent Strain of Serovar 5 Prevalent in China

    Get PDF
    Haemophilus parasuis can be either a commensal bacterium of the porcine respiratory tract or an opportunistic pathogen causing Glässer's disease, a severe systemic disease that has led to significant economical losses in the pig industry worldwide. We determined the complete genomic sequence of H. parasuis SH0165, a highly virulent strain of serovar 5, which was isolated from a hog pen in North China. The single circular chromosome was 2,269,156 base pairs in length and contained 2,031 protein-coding genes. Together with the full spectrum of genes detected by the analysis of metabolic pathways, we confirmed that H. parasuis generates ATP via both fermentation and respiration, and possesses an intact TCA cycle for anabolism. In addition to possessing the complete pathway essential for the biosynthesis of heme, this pathogen was also found to be well-equipped with different iron acquisition systems, such as the TonB system and ABC-type transport complexes, to overcome iron limitation during infection and persistence. We identified a number of genes encoding potential virulence factors, such as type IV fimbriae and surface polysaccharides. Analysis of the genome confirmed that H. parasuis is naturally competent, as genes related to DNA uptake are present. A nine-mer DNA uptake signal sequence (ACAAGCGGT), identical to that found in Actinobacillus pleuropneumoniae and Mannheimia haemolytica, followed by similar downstream motifs, was identified in the SH0165 genome. Genomic and phylogenetic comparisons with other Pasteurellaceae species further indicated that H. parasuis was closely related to another swine pathogenic bacteria A. pleuropneumoniae. The comprehensive genetic analysis presented here provides a foundation for future research on the metabolism, natural competence and virulence of H. parasuis

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    String Method for Calculation of Minimum Free-Energy Paths in Cartesian Space in Freely Tumbling Systems

    No full text
    The string method is a molecular-simulation technique that aims to calculate the minimum free-energy path of a chemical reaction or conformational transition, in the space of a predefined set of reaction coordinates that is typically highly dimensional. Any descriptor may be used as a reaction coordinate, but arguably the Cartesian coordinates of the atoms involved are the most unprejudiced and intuitive choice. Cartesian coordinates, however, present a nontrivial problem, in that they are not invariant to rigid-body molecular rotations and translations, which ideally ought to be unrestricted in the simulations. To overcome this difficulty, we reformulate the framework of the string method to integrate an on-the-fly structural-alignment algorithm. This approach, referred to as SOMA (String method with Optimal Molecular Alignment), enables the use of Cartesian reaction coordinates in freely tumbling molecular systems. In addition, this scheme permits the dissection of the free-energy change along the most probable path into individual atomic contributions, thus revealing the dominant mechanism of the simulated process. This detailed analysis also provides a physically meaningful criterion to coarse-grain the representation of the path. To demonstrate the accuracy of the method, we analyze the isomerization of the alanine dipeptide in a vacuum and the chair-to-inverted-chair transition of β-D mannose in explicit water. Notwithstanding the simplicity of these systems, the SOMA approach reveals novel insights into the atomic mechanism of these isomerizations. In both cases, we !nd that the dynamics and the energetics of the isomerization process are controlled by interactions involving only a handful of atoms in each molecule. Consistent with this result, we show that a coarse-grained SOMA calculation defined in terms of these subsets of atoms yields near-identical minimum free-energy paths and committor distributions to those obtained via a highly dimensional string

    Predicted structural basis for CD1c presentation of mycobacterial branched polyketides and long lipopeptide antigens

    No full text
    CD1 proteins mediate the trafficking and presentation of a diverse range of lipid antigens to T-cell receptors, and thus play a key role in our adaptive immune system. Crystal structures of several CD1 isoforms reveal a highly conserved tertiary structure, but also great variability in the anatomy of their binding pockets, reflecting their distinct ligand specificity. The structure of one important member of the family, CD1c, remains unknown. CD1c is of great interest as it can present an unusual and potent lipid antigen, mannosyl-β1-phosphomycoketide (MPM) from Mycobacterium tuberculosis, the causative agent of tuberculosis. CD1c has also been reported to present acetylated 12-amino-acid-long peptides (lipo-12), an observation with broad immunological implications but difficult to rationalize on structural grounds. To gain insights into the structural basis for the ligand specificity of CD1c, we have generated an atomic model of its binding domain using a detailed position-specific multiple-template homology modeling approach. This model reveals structural features unique to this isoform, particularly with regard to the so-called pocket F′, which provide a compelling rationale for the ability of CD1c to bind not only branched alkyl chains such as in MPM, but also long lipopeptides comparable to those presented by MHC proteins. A model of CD1c with bound MPM was constructed and analyzed through molecular dynamics simulations, showing marked structural stability in the time-scale of 100 ns. A model of CD1c in complex with lipo-12 is also presented

    Dynamics of the antigen-binding grooves in CD1 proteins: reversible hydrophobic collapse in the lipid-free state

    No full text
    CD1 proteins mediate the presentation of endogenous and foreign lipids on the cell surface for recognition by T cell receptors. To sample a diverse antigen pool, CD1 proteins are repeatedly internalized and recycled, assisted, in some cases, by lipid transfer proteins such as saposins. The specificity of each CD1 isoform is, therefore, conferred in part by its intracellular pathway but also by distinct structural features of the antigen-binding domain. Crystal structures of CD1-lipid complexes reveal hydrophobic grooves and pockets within these binding domains that appear to be specialized for different lipids. However, the mechanism of lipid loading and release remains to be characterized. Here we gain insights into this mechanism through a metaanalysis of the five human CD1 isoforms, in the lipid-bound and lipid-free states, using all-atom molecular dynamics simulations. Strikingly, for isoforms CD1b through CD1e, our simulations show the near-complete collapse of the hydrophobic cavities in the absence of the antigen. This event results from the spontaneous closure of the binding domain entrance, flanked by two α -helices. Accordingly, we show that the anatomy of the binding cavities is restored if these α-helices are repositioned extrinsically, suggesting that helper proteins encountered during recycling facilitate lipid exchange allosterically. By contrast, we show that the binding cavity of CD1a is largely preserved in the unliganded state because of persistent electrostatic interactions that keep the portal α-helices at a constant separation. The robustness of this binding groove is consistent with the observation that lipid exchange in CD1a is not dependent on cellular internalization

    On the principle of ion selectivity in Na<sup>+</sup>/H<sup>+</sup>-coupled membrane proteins: Experimental and theoretical studies of an ATP synthase rotor

    No full text
    Numerous membrane transporters and enzymes couple their mechanisms to the permeation of Na(+) or H(+), thereby harnessing the energy stored in the form of transmembrane electrochemical potential gradients to sustain their activities. The molecular and environmental factors that control and modulate the ion specificity of most of these systems are, however, poorly understood. Here, we use isothermal titration calorimetry to determine the Na(+)/H(+) selectivity of the ion-driven membrane rotor of an F-type ATP synthase. Consistent with earlier theoretical predictions, we find that this rotor is significantly H(+) selective, although not sufficiently to be functionally coupled to H(+), owing to the large excess of Na(+) in physiological settings. The functional Na(+) specificity of this ATP synthase thus results from two opposing factors, namely its inherent chemical selectivity and the relative availability of the coupling ion. Further theoretical studies of this membrane rotor, and of two others with a much stronger and a slightly weaker H(+) selectivity, indicate that, although the inherent selectivity of their ion-binding sites is largely set by the balance of polar and hydrophobic groups flanking a conserved carboxylic side chain, subtle variations in their structure and conformational dynamics, for a similar chemical makeup, can also have a significant contribution. We propose that the principle of ion selectivity outlined here may provide a rationale for the differentiation of Na(+)- and H(+)-coupled systems in other families of membrane transporters and enzymes
    corecore