29 research outputs found

    Genome-wide gene expression analysis of a murine model of prostate cancer progression: Deciphering the roles of IL-6 and p38 MAPK as potential therapeutic targets.

    No full text
    BACKGROUND:Prostate cancer (PCa) is the most commonly diagnosed cancer and the second leading cause of cancer-related deaths among adult males globally. The poor prognosis of PCa is largely due to late diagnosis of the disease when it has already progressed to an advanced stage marked by androgen-independence, thus necessitating new strategies for early detection and treatment. We construe that these direly needed advances are limited by our poor understanding of early events in the progression of PCa and that would thus represent ideal targets for early intervention. To begin to fill this void, we interrogated molecular "oncophenotypes" that embody the transition of PCa from an androgen-dependent (AD) to-independent (AI) state. METHODS:To accomplish this aim, we used our previously established AD and AI murine PCa cell lines, PLum-AD and PLum-AI, respectively, which recapitulate primary and progressive PCa morphologically and molecularly. We statistically surveyed global gene expressions in these cell lines by microarray analysis. Differential profiles were functionally interrogated by pathways, gene set enrichment and topological gene network analyses. RESULTS:Gene expression analysis of PLum-AD and PLum-AI transcriptomes (n = 3 each), revealed 723 differentially expressed genes (392 upregulated and 331 downregulated) in PLum-AI compared to PLum-AD cells. Gene set analysis demonstrated enrichment of biological functions and pathways in PLum-AI cells that are central to tumor aggressiveness including cell migration and invasion facilitated by epithelial-to-mesenchymal transition (EMT). Further analysis demonstrated that the p38 mitogen-activated protein kinase (MAPK) was predicted to be significantly activated in the PLum-AI cells, whereas gene sets previously associated with favorable response to the p38 inhibitor SB203580 were attenuated (i.e., inversely enriched) in the PLum-AI cells, suggesting that these aggressive cells may be therapeutically vulnerable to p38 inhibition. Gene set and gene-network analysis also alluded to activation of other signaling networks particularly those associated with enhanced EMT, inflammation and immune function/response including, but not limited to Tnf, IL-6, Mmp 2, Ctgf, and Ptges. Accordingly, we chose SB203580 and IL-6 to validate their effect on PLum-AD and PLum-AI. Some of the common genes identified in the gene-network analysis were validated at the molecular and functional level. Additionally, the vulnerability to SB203580 and the effect of IL-6 were also validated on the stem/progenitor cell population using the sphere formation assay. CONCLUSIONS:In summary, our study highlights pathways associated with an augmented malignant phenotype in AI cells and presents new high-potential targets to constrain the aggressive malignancy seen in the castration-resistant PCa

    Novel 2‑(5-Imino‑5H‑isoquinolones[3,4‑b]quinoxalin-7-ylmethyl)-benzonitrile (DIQ3) and Other Related Derivatives Targeting Colon Cancer Cells: Syntheses and in Vitro Models

    Get PDF
    Chemotherapy has been shown to be effective in reducing the progression and development of cancer in metastatic patients. However, drug selectivity is still a major issue for most chemotherapeutics. In this study, we synthesized four novel heterocyclic compounds having similarity in structure with quinone systems whereby nitrogen atoms replace the oxygen atoms. The anticancer activity of these compounds (DIQ3-6) was tested against HCT116 human colon cancer cells. We showed that all four heterocycles caused significant reduction in colon cancer cell viability at doses as low as 4 μM, a concentration that was not cytotoxic to normal human FHs74Int intestinal cell lines. Interestingly, these heterocycles inhibited colon sphere formation in 3D cultures at first generation (G1), mainly because of inhibition of proliferation as evidenced by Ki67 staining. Thus, DIQ3 causes sufficient eradication of the self-renewal ability of the highly resistant cancer stem cells. This study represents the first documentation of the activity of these novel heterocyclic compounds, particularly compound DIQ3, and their potential therapeutic use in targeting colon cancer self-renewal capacity. Our findings provide the basis for proposing these nontoxic and stable compounds for additional testing against cancer
    corecore