5 research outputs found

    Biofilm formation by E. coli and S. aureus on cellphone cover: sensitivity to commercially available sanitizers

    No full text
    Presence of pathogens on the cellphones and their accessories poses a significant risk for public health. This study aimed to determine the biofilm-forming capability of S. aureus and E. coli on pieces made from a different commercially available cell phone and aadditionally to test the effectiveness of the most common commercially available sanitizers. Therefore, bacterial biofilm biomasses were quantitatively determined on cellphone covers using crystal violet assay in the presence and absence of common sanitizers. This study revealed that S. aureus and E. coli could form biofilms on the surfaces of all cellphones covers. Additionally, the sanitizers that contain sodium hypochlorite 5.25% and those composed of 38.9% ethanol and 0.05% dodecyl dimethyl ammonium chloride showed the highest log reduction in the number of viable cells after 5 minutes of exposure against biofilms formed by both E. coli and S. aureus compared to other tested sanitizers (chloroxylenol 4.8%, 2-propanol 64%, and ethanol 70%). Moreover, 4.8% chloroxylenol and 70% ethanol-based sanitizers showed log reductions significantly higher than 2-propanol-based ones. In conclusion, cellphone covers were shown to be suitable surfaces for microbial biofilm formation produced by S. aureus and E. coli. The antimicrobial activity of commercially available sanitizers against these bacterial biofilms was variable, with sodium hypochlorite and ethanol/dodecyl dimethyl ammonium chloride sanitizer being the most effective

    Molecular Characterization of Carbapenem-Resistant Acinetobacter baumannii Isolated from Intensive Care Unit Patients in Jordanian Hospitals

    No full text
    Acinetobacter baumannii is a common cause of healthcare-associated infections (HAI) worldwide, mostly occurring in intensive care units (ICUs). Extended-spectrum beta lactamases (ESBL)-positive A. baumannii strains have emerged as highly resistant to most currently used antimicrobial agents, including carbapenems. The most common mechanism for carbapenem resistance in this species is β-lactamase-mediated resistance. Carbapenem-hydrolyzing class D oxacillinases are widespread among multidrug-resistant (MDR) A. baumannii strains. The present study was conducted to determine the presence and distribution of blaOXA genes among multidrug-resistant A. baumannii isolated from ICU patients and genes encoding insertion sequence (IS-1) in these isolates. Additionally, the plasmid DNA profiles of these isolates were determined. A total of 120 clinical isolates of A. baumannii from various ICU clinical specimens of four main Jordanian hospitals were collected. Bacterial isolate identification was confirmed by biochemical testing and antibiotic sensitivity was then assessed. PCR amplification and automated sequencing were carried out to detect the presence of blaOXA-51, blaOXA-23, blaOXA-24, and blaOXA-58 genes, and ISAba1 insertion sequence. Out of the 120 A. baumannii isolates, 95% of the isolates were resistant to three or more classes of the antibiotics tested and were identified as MDR. The most frequent resistance of the isolates was against piperacillin (96.7%), cephalosporins (97.5%), and β-lactam/β-lactamase inhibitor combinations antibiotics (95.8%). There were 24 (20%) ESBL-producing isolates. A co-existence of blaOXA-51 gene and ISAba1 in all the 24 ESBL-producing isolates was determined. In addition, in the 24 ESBL-producing isolates, 21 (87.5%) carried blaOXA-51 and blaOXA-23 genes, 1 (4.2%) carried blaOXA-51 and blaOXA-24, but all were negative for the blaOXA-58 gene. Plasmid DNA profile A and profile B were the most common (29%) in ESBL-positive MDR A. baumannii isolates while plasmid DNA profile A was the most common in the ESBL-negative isolates. In conclusion, there was an increase in prevalence of MDR-A. baumannii in ICU wards in Jordanian hospitals, especially those having an ESBL phenotype. Thus, identification of ESBL genes is necessary for the surveillance of their transmission in hospitals

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore