2,635 research outputs found

    Hybrid fuzzy- proportionl integral derivative controller (F-PID-C) for control of speed brushless direct curren motor (BLDCM)

    Get PDF
    Hybrid Fuzzy proportional-integral-derivative (PID) controllers (F-PID-C) is designed and analyzed for controlling speed of brushless DC (BLDC) motor. A simulation investigation of the controller for controlling the speed of BLDC motors is performed to beat the presence of nonlinearities and uncertainties in the system. The fuzzy logic controller (FLC) is designed according to fuzzy rules so that the systems are fundamentally robust. There are 49 fuzzy rules for each parameter of FUZZY-PID controller. Fuzzy Logic is used to tune each parameter of the proportional, integral and derivative ( kp,ki,kd) gains, respectively of the PID controller. The FLC has two inputs i.e., i) the motor speed error between the reference and actual speed and ii) the change in speed of error (rate of change error). The three outputs of the FLC are the proportional gain, kp, integral gain ki and derivative gain kd, gains to be used as the parameters of PID controller in order to control the speed of the BLDC motor. Various types of membership functions have been used in this project i.e., gaussian, trapezoidal and triangular are assessed in the fuzzy control and these membership functions are used in FUZZY PID for comparative analysis. The membership functions and the rules have been defined using fuzzy system editor given in MATLAB. Two distinct situations are simulated, which are start response, step response with load and without load. The FUZZY-PID controller has been tuned by trial and error and performance parameters are rise time, settling time and overshoot. The findings show that the trapezoidal membership function give good results of short rise time, fast settling time and minimum overshoot compared to others for speed control of the BLDC motor

    Modified Newton's Law of Gravitation Due to Minimal Length in Quantum Gravity

    Full text link
    A recent theory about the origin of the gravity suggests that the gravity is originally an entropic force. In this work, we discuss the effects of generalized uncertainty principle (GUP) which is proposed by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity theories (DSR), on the area law of the entropy. This leads to a Area\sqrt{Area}-type correction to the area law of entropy which imply that the number of bits NN is modified. Therefore, we obtain a modified Newton's law of gravitation. Surprisingly, this modification agrees with different sign with the prediction of Randall-Sundrum II model which contains one uncompactified extra dimension. Furthermore, such modification may have observable consequences at length scales much larger than the Planck scale.Comment: 12 pages, no figures, references adde

    Modeling small objects under uncertainties : novel algorithms and applications.

    Get PDF
    Active Shape Models (ASM), Active Appearance Models (AAM) and Active Tensor Models (ATM) are common approaches to model elastic (deformable) objects. These models require an ensemble of shapes and textures, annotated by human experts, in order identify the model order and parameters. A candidate object may be represented by a weighted sum of basis generated by an optimization process. These methods have been very effective for modeling deformable objects in biomedical imaging, biometrics, computer vision and graphics. They have been tried mainly on objects with known features that are amenable to manual (expert) annotation. They have not been examined on objects with severe ambiguities to be uniquely characterized by experts. This dissertation presents a unified approach for modeling, detecting, segmenting and categorizing small objects under uncertainty, with focus on lung nodules that may appear in low dose CT (LDCT) scans of the human chest. The AAM, ASM and the ATM approaches are used for the first time on this application. A new formulation to object detection by template matching, as an energy optimization, is introduced. Nine similarity measures of matching have been quantitatively evaluated for detecting nodules less than 1 em in diameter. Statistical methods that combine intensity, shape and spatial interaction are examined for segmentation of small size objects. Extensions of the intensity model using the linear combination of Gaussians (LCG) approach are introduced, in order to estimate the number of modes in the LCG equation. The classical maximum a posteriori (MAP) segmentation approach has been adapted to handle segmentation of small size lung nodules that are randomly located in the lung tissue. A novel empirical approach has been devised to simultaneously detect and segment the lung nodules in LDCT scans. The level sets methods approach was also applied for lung nodule segmentation. A new formulation for the energy function controlling the level set propagation has been introduced taking into account the specific properties of the nodules. Finally, a novel approach for classification of the segmented nodules into categories has been introduced. Geometric object descriptors such as the SIFT, AS 1FT, SURF and LBP have been used for feature extraction and matching of small size lung nodules; the LBP has been found to be the most robust. Categorization implies classification of detected and segmented objects into classes or types. The object descriptors have been deployed in the detection step for false positive reduction, and in the categorization stage to assign a class and type for the nodules. The AAMI ASMI A TM models have been used for the categorization stage. The front-end processes of lung nodule modeling, detection, segmentation and classification/categorization are model-based and data-driven. This dissertation is the first attempt in the literature at creating an entirely model-based approach for lung nodule analysis

    Spontaneous Coronary Artery Dissection : The Phantom Menace

    Get PDF
    Articles © The authorsWe present a case of a 66-year-old lady with chest pain, without dynamic 12-lead electrocardiographic (ECG) changes and normal serial troponin. Coronary angiography revealed a linear filing defect in the first obtuse marginal branch of the circumflex artery indicating coronary artery dissection, with superadded thrombus. She was managed medically with dual antiplatelet therapy and has responded well. Spontaneous coronary artery dissection (SCAD) is a rare cause of cardiac chest pain, which can be missed without coronary angiography. Unlike most other lesions in patients with unstable symptoms, where coronary intervention with stenting is recommended, patients with SCAD generally fare better with conservative measures than with intervention, unless there is hemodynamic instability.Peer reviewe

    Hybrid fuzzy-proportionl integral derivative controller (F-PID-C) for control of speed brushless direct current motor (BLDCM)

    Get PDF
    Hybrid Fuzzy proportional-integral-derivative (PID) controllers (F-PID-C) is designed and analyzed for controlling speed of brushless DC (BLDC) motor. A simulation investigation of the controller for controlling the speed of BLDC motors is performed to beat the presence of nonlinearities and uncertainties in the system. The fuzzy logic controller (FLC) is designed according to fuzzy rules so that the systems are fundamentally robust. There are 49 fuzzy rules for each parameter of FUZZY-PID controller. Fuzzy Logic is used to tune each parameter of the proportional, integral and derivative ( kp,ki,kd) gains, respectively of the PID controller. The FLC has two inputs i.e., i) the motor speed error between the reference and actual speed and ii) the change in speed of error (rate of change error). The three outputs of the FLC are the proportional gain, kp, integral gain ki and derivative gain kd, gains to be used as the parameters of PID controller in order to control the speed of the BLDC motor. Various types of membership functions have been used in this project i.e., gaussian, trapezoidal and triangular are assessed in the fuzzy control and these membership functions are used in FUZZY PID for comparative analysis. The membership functions and the rules have been defined using fuzzy system editor given in MATLAB. Two distinct situations are simulated, which are start response, step response with load and without load. The FUZZY-PID controller has been tuned by trial and error and performance parameters are rise time, settling time and overshoot. The findings show that the trapezoidal membership function give good results of short rise time, fast settling time and minimum overshoot compared to others for speed control of the BLDC motor
    • …
    corecore