62 research outputs found

    Deep Intraspecific Divergence in the Endemic Herb Lancea tibetica (Mazaceae) Distributed Over the Qinghai-Tibetan Plateau

    Get PDF
    Qinghai-Tibetan Plateau (QTP) is an important biodiversity hub, which is very sensitive to climate change. Here in this study, we investigated genetic diversity and past population dynamics of Lancea tibetica (Mazaceae), an endemic herb to QTP and adjacent highlands. We sequenced chloroplast and nuclear ribosomal DNA fragments for 429 individuals, collected from 29 localities, covering their major distribution range at the QTP. A total of 19 chloroplast haplotypes and 13 nuclear genotypes in two well-differentiated lineages, corresponding to populations into two groups isolated by Tanggula and Bayangela Mountains. Meanwhile, significant phylogeographical structure was detected among sampling range of L. tibetica, and 61.50% of genetic variations was partitioned between groups. Gene flow across the whole region appears to be restricted by high mountains, suggesting a significant role of geography in the genetic differences between the two groups. Divergence time between the two lineages dated to 8.63 million years ago, which corresponded to the uplifting of QTP during the late Miocene and Pliocene. Ecological differences were found between both the lineages represent species-specific characteristics, sufficient to keep the lineages separated to a high degree. The simulated distribution from the last interglacial period to the current period showed that the distribution of L. tibetica experienced shrinkage and expansion. Climate changes during the Pleistocene glacial-interglacial cycles had a dramatic effect on L. tibetica distribution ranges. Multiple refugia of L. tibetica might have remained during the species history, to south of the Tanggula and north of Bayangela Mountains, both appeared as topological barrier and contributed to restricting gene flow between the two lineages. Together, geographic isolation and climatic factors have played a fundamental role in promoting diversification and evolution of L. tibetica

    Enzyme-Catalytic Self-Triggered Release of Drugs from a Nanosystem for Efficient Delivery to Nuclei of Tumor Cells.

    Get PDF
    Stimulus-responsive drug delivery nanosystems (DDSs) are of great significance in improving cancer therapy for intelligent control over drug release. However, among them, many DDSs are unable to realize rapid and sufficient drug release because most internal stimulants might be consumed during the release process. To address the plight, an abundant supply of stimulants is highly desirable. Herein, a core crosslinked pullulan-di-(4,1-hydroxybenzylene)diselenide nanosystem, which could generate abundant exogenous-stimulant reactive oxygen species (ROS) via tumor-specific NAD(P)H:quinone oxidoreductase-1 (NQO1) catalysis, was constructed by the encapsulation of β-lapachone. The enzyme-catalytic-generated ROS induced self-triggered cascade amplification release of loaded doxorubicin (DOX) in the tumor cells, thus achieving efficient delivery of DOX to the nuclei of tumor cells by breaking the diselenide bond of the nanosystem. As a result, the antitumor effect of this nanosystem was significantly improved in the HepG2 xenograft model. In general, this study offers a new paradigm for utilizing the interaction between the loaded agent and carrier in the tumor cells to obtain self-triggered drug release in the design of DDSs for enhanced cancer therapy

    Anti-Erosion Influences of Surface Roughness on Sloping Agricultural Land in the Loess Plateau, Northwest China

    No full text
    The roughness of surface soil and the benefits produced by tillage for slope runoff and sediment reduction have attracted considerable interest; however, there are inconsistencies in existing research results. In this study, we have studied the anti-erosion influences of several typical tillage practices on both runoff and sediment generation in areas of sloping farmland in the Loess Plateau of northwest China. Rough surfaces were prepared manually, according to the surface microtopography of the plateau’s sloping farmland, using four tillage practices; a smooth surface was used as a control. Rainfall simulation experiments were performed using three rainfall intensities and five slope gradients. A path analysis was used to analyze the interactive effects of the slope gradient, rainfall intensity, and the surface roughness on the sediment yield and runoff volume. According to our findings, the gradient of a slope and the intensity of the rainfall both had a positive effect, while the surface roughness had a negative effect; the rate of 40.8% and 21.0% was lower than the values under CK on sediment yield and runoff volume. The interaction between the rainfall intensity and surface roughness always had a runoff reduction effect. Conversely, there was a critical slope gradient between 5° and 10° for sediment yield. The interaction between the slope gradient and surface roughness also had a runoff reduction effect, which was diminished by increasing the rainfall intensity. However, their interactive influence on sediment yield was inconsistent, with a critical slope gradient between 10° and 15°. Based on the comprehensive interactive effects among all three factors, we concluded that rainfall intensity, slope gradient, and surface roughness collectively played a crucial role in promoting runoff and sediment generation under tillage. The results support soil and water conservation by tillage on the sloping farmlands of the Loess Plateau

    Anti-Erosion Influences of Surface Roughness on Sloping Agricultural Land in the Loess Plateau, Northwest China

    No full text
    The roughness of surface soil and the benefits produced by tillage for slope runoff and sediment reduction have attracted considerable interest; however, there are inconsistencies in existing research results. In this study, we have studied the anti-erosion influences of several typical tillage practices on both runoff and sediment generation in areas of sloping farmland in the Loess Plateau of northwest China. Rough surfaces were prepared manually, according to the surface microtopography of the plateau’s sloping farmland, using four tillage practices; a smooth surface was used as a control. Rainfall simulation experiments were performed using three rainfall intensities and five slope gradients. A path analysis was used to analyze the interactive effects of the slope gradient, rainfall intensity, and the surface roughness on the sediment yield and runoff volume. According to our findings, the gradient of a slope and the intensity of the rainfall both had a positive effect, while the surface roughness had a negative effect; the rate of 40.8% and 21.0% was lower than the values under CK on sediment yield and runoff volume. The interaction between the rainfall intensity and surface roughness always had a runoff reduction effect. Conversely, there was a critical slope gradient between 5° and 10° for sediment yield. The interaction between the slope gradient and surface roughness also had a runoff reduction effect, which was diminished by increasing the rainfall intensity. However, their interactive influence on sediment yield was inconsistent, with a critical slope gradient between 10° and 15°. Based on the comprehensive interactive effects among all three factors, we concluded that rainfall intensity, slope gradient, and surface roughness collectively played a crucial role in promoting runoff and sediment generation under tillage. The results support soil and water conservation by tillage on the sloping farmlands of the Loess Plateau

    The complete chloroplast genome sequence of Neopallasia pectinata (Asteraceae)

    No full text
    The complete chloroplast (cp) genome of Neopallasia pectinata was sequenced and analyzed in this study. It was 150,766 bp in length and has a typical circular structure, including a large single copy (LSC) with 82,605 bp, two inverted repeats (IRs) with 24,944 bp, and a small single copy (SSC) with 18,273 bp. The phylogenetic analysis of N. pectinata and its related taxa was conducted depended on the complete cp-genome sequences. The maximum likelihood tree indicates a close relationship between Chrysanthemum and Neopallasia. The cp-genome of N. pectinata is useful for future phylogenetic studies of Asteraceae

    Comparative Plastome Analyses of Ephedra przewalskii and E. monosperma (Ephedraceae)

    No full text
    Ephedra species were erect, branching shrubs found in desert or arid regions worldwide as the source of ephedrine alkaloids. In this study, the complete chloroplast genome of Ephedra przewalskii and E. monosperma on the Qinghai-Tibet Plateau were sequenced, assembled, and annotated. Compared with the other four published Ephedra species, the chloroplast genomes of Ephedra species were highly conservative, with a quadripartite structure. The length of the chloroplast genome was 109,569 bp in E. przewalskii with 36.6% GC and 109,604 bp in E. monosperma with 36.6% GC. We detected 118 genes in both Ephedra species, including 73 PCGs, 37 tRNA genes, and eight rRNA genes. Among them, the ndh family genes were lost, which could be used to study the phylogeny and genetic diversity of the genus Ephedra, combined with multiple highly variable intergenic spacer (IGS) regions. Codon usage preference of Ephedra species was weak. The ratio of non-synonymous substitutions and synonymous substitutions was low, showing that the PCGs of Ephedra may be under the pressure of purifying selection. ML and BI analysis showed similar phylogenetic topologies. Ephedra species clustered together in a well-supported monophyletic clade. E. przewalskii and E. monosperma were not gathered in one clade, consistent with the classification system by Flora of China. This study reveals differences in the chloroplast genomes of Ephedra, providing valuable and abundant data for the phylogenetic analysis and species identification of Ephedra

    Preparation, characterization and application of magnetic Fe3O4-CS for the adsorption of orange I from aqueous solutions.

    No full text
    Fe3O4 (Fe3O4-CS) coated with magnetic chitosan was prepared as an adsorbent for the removal of Orange I from aqueous solutions and characterized by FTIR, XRD, SEM, TEM and TGA measurements. The effects of pH, initial concentration and contact time on the adsorption of Orange I from aqueous solutions were investigated. The decoloration rate was higher than 94% in the initial concentration range of 50-150 mg L(-1) at pH 2.0. The maximum adsorption amount was 183.2 mg g-1 and was obtained at an initial concentration of 400 mg L(-1) at pH 2.0. The adsorption equilibrium was reached in 30 minutes, demonstrating that the obtained adsorbent has the potential for practical application. The equilibrium adsorption isotherm was analyzed by the Freundlich and Langmuir models, and the adsorption kinetics were analyzed by the pseudo-first-order and pseudo-second-order kinetic models. The higher linear correlation coefficients showed that the Langmuir model (R(2) = 0.9995) and pseudo-second-order model (R(2) = 0.9561) offered the better fits

    Structural divergence and phylogenetic relationships of Ajania (Asteraceae) from plastomes and ETS

    No full text
    Abstract Background Ajania Poljakov, an Asteraceae family member, grows mostly in Asia’s arid and semi-desert areas and is a significant commercial and decorative plant. Nevertheless, the genus’ classification has been disputed, and the evolutionary connections within the genus have not been thoroughly defined. Hence, we sequenced and analyzed Ajania’s plastid genomes and combined them with ETS data to assess their phylogenetic relationships. Results We obtained a total of six new Ajania plastid genomes and nine ETS sequences. The whole plastome lengths of the six species sampled ranged from 151,002 bp to 151,115 bp, showing conserved structures. Combined with publicly available data from GenBank, we constructed six datasets to reconstruct the phylogenetic relationships, detecting nucleoplasmic clashes. Our results reveal the affinities of Artemisia, Chrysanthemum and Stilpnolepis to Ajania and validate the early taxonomy reclassification. Some of the plastid genes with low phylogenetic information and gene trees with topological differences may have contributed to the ambiguous phylogenetic results of Ajania. There is extensive evolutionary rate heterogeneity in plastid genes. The psbH and ycf2 genes, which are involved in photosynthesis and ATP transport, are under selective pressure. Plastomes from Ajania species diverged, and structural aspects of plastomes may indicate some of the real evolutionary connections. We suggest the ycf1 gene as a viable plastid DNA barcode because it has significant nucleotide diversity and better reflects evolutionary connections. Conclusion Our findings validate the early Ajania taxonomy reclassification and show evolutionary rate heterogeneity, genetic variety, and phylogenetic heterogeneity of plastid genes. This research might provide new insights into the taxonomy and evolution of Ajania, as well as provide useful information for germplasm innovation and genetic enhancement in horticultural species
    • …
    corecore