7 research outputs found

    Multiphoton microscopy and ultrafast spectroscopy: Imaging meets quantum (MUSIQ) roadmap

    Get PDF
    In April 2019 the EU Marie Skłodowska-Curie Actions (MSCA) Innovative Training Networks (ITN) MUSIQ officially started. The network brought together a unique team of world-leading academics and industrial partners at the forefront of optical micro-spectroscopy and ultrafast laser technology developments merged with fundamental studies of coherent light-matter interaction phenomena, development of quantitative image analysis tools beyond state-of-the-art, and biomedical/pharmaceutical real-world applications. The unique vision of MUSIQ has been to develop and apply the next-generation optical microscopy technologies exploiting quantum coherent nonlinear phenomena. This Roadmap has been written collectively by the MUSIQ early-stage researchers and their supervisors. It provides a summary of the achievements within MUSIQ to date, with an outlook towards future directions

    High-resolution wide-field coherent anti-stokes Raman scattering microscopy

    No full text
    Deux types de microscopie non linéaire à grand champ sont proposés dans ce manuscrit. Le premier est appelé microscopie à illumination aléatoire à diffusion Raman cohérente anti-Stokes à grand champ (RIM-CARS) et combine l'illumination dynamique par speckle (DSI) et la microscopie à illumination aléatoire (RIM), avec la diffusion Raman cohérente anti-Stokes à grand champ (CARS). Nous montrons comment la théorie de la DSI peut être appliquée à la CARS. Nous présentons ensuite des simulations informatiques et des résultats expérimentaux. Différents types d'échantillons ont été analysés pour prouver la polyvalence de la technique. En outre, la CARS est combinée à la génération de fréquences additionnelles (SFG) pour montrer son applicabilité dans le domaine biomédical. La deuxième technique est appelée microscopie par ptychographie de Fourier et génération de seconde harmonique (FP-SHG). Elle combine la ptychographie de Fourier (FP) avec la microscopie SHG. La FP est à l'origine une technique linéaire capable de reconstruire une image haute définition d'un objet à partir de plusieurs images obtenues sous différents angles d'éclairage. L'avantage de combiner CARS/SHG avec FP provient de la fonction de transfert optique (OTF) différente qui caractérise ces deux techniques non linéaires par rapport à l'optique linéaire. L'OTF de CARS et SHG supporte un espace de fréquence plus large que les contrastes linéaires permettant ainsi d'obtenir plus d'informations, en particulier le long de l'axe z. Les algorithmes FP-CARS et FP-SHG sont présentés. Enfin, nous présentons un dispositif expérimental FP-CARS utilisé et présentons les premiers résultats expérimentauxTwo types of nonlinear wide-field microscopy are proposed in this manuscript. The first is called random illumination wide-field coherent anti-Stokes Raman scattering microscopy (RIM-CARS) and combines dynamic speckle illumination (DSI) and random illumination microscopy (RIM), with wide-field coherent anti-Stokes Raman scattering (CARS). We show how the theory of DSI can be applied to CARS. Both computational simulations and experimental results are then reported. Different types of samples were analyzed to prove the versatility of the technique. Furthermore, CARS is combined with sum frequency generation (SFG) to show its applicability in the biomedical field. The second technique is called Fourier ptychography second harmonic generation (FP-SHG) microscopy. It combines Fourier ptychography (FP) with SHG microscopy. FP originated as a linear technique capable of reconstructing a high-definition image of an object from several images obtained with different illumination angles. The advantage of combining CARS/SHG with FP stems from the different optical transfer function (OTF) that characterizes these two nonlinear techniques in comparison to linear optics. Indeed, the OTF of CARS and SHG supports a wider frequency space than linear contrasts (reflectance, fluorescence) thus allowing more information to be obtained, especially along the z-axis. FP-CARS and FP-SHG algorithms are presented. Finally, we present a FP-CARS experimental setup used and present the first experimental result

    SECOND HARMONIC FOURIER PTYCHOGRAPHY MICROSCOPY

    No full text
    International audienc

    Random illumination wide field coherent anti-Stokes Raman scattering microscopy (RIM-CARS)

    No full text
    We revisit wide field CARS imaging using speckle field illuminations. In the proposed scheme we break the CARS coherence using fast varying pump speckle illuminations while keeping static the Stokes speckle. Acquiring a large number of Stokes images enables dynamic speckle illumination (DSI) and random illumination microscopy (RIM). We show that the first one enables quasi-confocal axial sectioning (1/z) while the second one, through post-processing, can retrieve a superior image contrast, noise level and spatial resolution as an important step towards robust nonlinear super-resolution CARS microscopy

    Roadmap on bio-nano-photonics

    Get PDF
    International audienceIn the quest to decipher the chain of life from molecules to cells, the biological and biophysical questions being asked increasingly demand techniques that are capable of identifying specific biomolecules in their native environment, and can measure biomolecular interactions quantitatively, at the smallest possible scale in space and time, without perturbing the system under observation. The interaction of light with biomolecules offers a wealth of phenomena and tools that can be exploited to drive this progress. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of bio-nano-photonics, spanning from the development of optical micro/nano-spectroscopy technologies for quantitative bioimaging and biosensing to the fundamental understanding of light–matter interaction phenomena with biomolecules at the nanoscale. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences
    corecore