149 research outputs found

    Single-nucleotide polymorphism-based genetic risk score and patient age at prostate cancer diagnosis

    Get PDF
    Importance: Few studies have evaluated the association between a single-nucleotide polymorphism-based genetic risk score (GRS) and patient age at prostate cancer (PCa) diagnosis. Objectives: To test the association between a GRS and patient age at PCa diagnosis and to compare the performance of a GRS with that of family history (FH) in PCa risk stratification. Design, Setting, and Participants: A cohort study of 3225 white men was conducted as a secondary analysis of the Reduction by Dutasteride of Prostate Cancer Events (REDUCE) chemoprevention trial, a 4-year, randomized, double-blind, placebo-controlled multicenter study conducted from March 2003 to April 2009 to evaluate the safety and efficacy of dutasteride in reducing PCa events. Participants were confirmed to be cancer free by prostate biopsy (6-12 cores) within 6 months prior to the study and underwent 10 core biopsies every 2 years per protocol. The dates for performing data analysis were from July 2016 to October 2019. Interventions: A well-established, population-standardized GRS was calculated for each participant based on 110 known PCa risk-associated single-nucleotide polymorphisms, which is a relative risk compared with the general population. Men were classified into 3 GRS risk groups based on predetermined cutoff values: low (\u3c0.50), average (0.50-1.49), and high (≥1.50). Main Outcomes and Measures: Prostate cancer diagnosis-free survival among men of different risk groups. Results: Among 3225 men (median age, 63 years [interquartile range, 58-67 years]) in the study, 683 (21%) were classified as low risk, 1937 (60%) as average risk, and 605 (19%) as high risk based on GRS alone. In comparison, 2789 (86%) were classified as low or average risk and 436 (14%) as high risk based on FH alone. Men in higher GRS risk groups had a PCa diagnosis-free survival rate that was worse than that of those in the lower GRS risk group (χ2 = 53.3; P \u3c .001 for trend) and in participants with a negative FH of PCa (χ2 = 45.5; P \u3c .001 for trend). Combining GRS and FH further stratified overall genetic risk, indicating that 957 men (30%) were at high genetic risk (either high GRS or positive FH), 1667 men (52%) were at average genetic risk (average GRS and negative FH), and 601 men (19%) were at low genetic risk (low GRS and negative FH). The median PCa diagnosis-free survival was 74 years (95% CI, 73-75 years) for men at high genetic risk, 77 years (95% CI, 75 to \u3e80 years) for men at average genetic risk, and more than 80 years (95% CI, \u3e80 to \u3e80 years) for men at low genetic risk. In contrast, the median PCa diagnosis-free survival was 73 years (95% CI, 71-76 years) for men with a positive FH and 77 years (95% CI, 76-79 years) for men with a negative FH. Conclusions and Relevance: This study suggests that a GRS is significantly associated with patient age at PCa diagnosis. Combining FH and GRS may better stratify inherited risk than FH alone for developing personalized PCa screening strategies

    Curcumin Prevents High Fat Diet Induced Insulin Resistance and Obesity via Attenuating Lipogenesis in Liver and Inflammatory Pathway in Adipocytes

    Get PDF
    Background: Mechanisms underlying the attenuation of body weight gain and insulin resistance in response to high fat diet (HFD) by the curry compound curcumin need to be further explored. Although the attenuation of the inflammatory pathway is an accepted mechanism, a recent study suggested that curcumin stimulates Wnt signaling pathway and hence suppresses adipogenic differentiation. This is in contrast with the known repressive effect of curcumin on Wnt signaling in other cell lineages. Methodology and Principal Findings: We conducted the examination on low fat diet, or HFD fed C57BL/6J mice with or without curcumin intervention for 28 weeks. Curcumin significantly attenuated the effect of HFD on glucose disposal, body weight/fat gain, as well as the development of insulin resistance. No stimulatory effect on Wnt activation was observed in the mature fat tissue. In addition, curcumin did not stimulate Wnt signaling in vitro in primary rat adipocytes. Furthermore, curcumin inhibited lipogenic gene expression in the liver and blocked the effects of HFD on macrophage infiltration and the inflammatory pathway in the adipose tissue. Conclusions and Significance: We conclude that the beneficial effect of curcumin during HFD consumption is mediated by attenuating lipogenic gene expression in the liver and the inflammatory response in the adipose tissue, in the absence o

    Metformin treatment in diabetes and heart failure: when academic equipoise meets clinical reality

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>Metformin has had a 'black box' contraindication in diabetic patients with heart failure (HF), but many believe it to be the treatment of choice in this setting. Therefore, we attempted to conduct a pilot study to evaluate the feasibility of undertaking a large randomized controlled trial with clinical endpoints.</p> <p>Study Design</p> <p>The pilot study was a randomized double blinded placebo controlled trial. Patients with HF and type 2 diabetes were screened in hospitals and HF clinics in Edmonton, Alberta, Canada (population ~1 million). Major exclusion criteria included the current use of insulin or high dose metformin, decreased renal function, or a glycosylated hemoglobin <7%. Patients were to be randomized to 1500 mg of metformin daily or matching placebo and followed for 6 months for a variety of functional outcomes, as well as clinical events.</p> <p>Results</p> <p>Fifty-eight patients were screened over a six month period and all were excluded. Because of futility with respect to enrollment, the pilot study was abandoned. The mean age of screened patients was 77 (SD 9) years and 57% were male. The main reasons for exclusion were: use of insulin therapy (n = 23; 40%), glycosylated hemoglobin <7% (n = 17; 29%) and current use of high dose metformin (n = 12; 21%). Overall, contraindicated metformin therapy was the most commonly prescribed oral antihyperglycemic agent (n = 27; 51%). On average, patients were receiving 1,706 mg (SD 488 mg) of metformin daily and 12 (44%) used only metformin.</p> <p>Conclusion</p> <p>Despite uncertainty in the scientific literature, there does not appear to be clinical uncertainty with regards to the safety or effectiveness of metformin in HF making a definitive randomized trial virtually impossible.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: NCT00325910</p

    Nck2 promotes human melanoma cell proliferation, migration and invasion in vitro and primary melanoma-derived tumor growth in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nck1 and Nck2 adaptor proteins are involved in signaling pathways mediating proliferation, cytoskeleton organization and integrated stress response. Overexpression of Nck1 in fibroblasts has been shown to be oncogenic. Through the years this concept has been challenged and the consensus is now that overexpression of either Nck cooperates with strong oncogenes to transform cells. Therefore, variations in Nck expression levels in transformed cells could endorse cancer progression.</p> <p>Methods</p> <p>Expression of Nck1 and Nck2 proteins in various cancer cell lines at different stages of progression were analyzed by western blots. We created human primary melanoma cell lines overexpressing GFP-Nck2 and investigated their ability to proliferate along with metastatic characteristics such as migration and invasion. By western blot analysis, we compared levels of proteins phosphorylated on tyrosine as well as cadherins and integrins in human melanoma cells overexpressing or not Nck2. Finally, in mice we assessed tumor growth rate of human melanoma cells expressing increasing levels of Nck2.</p> <p>Results</p> <p>We found that expression of Nck2 is consistently increased in various metastatic cancer cell lines compared with primary counterparts. Particularly, we observed significant higher levels of Nck2 protein and mRNA, as opposed to no change in Nck1, in human metastatic melanoma cell lines compared with non-metastatic melanoma and normal melanocytes. We demonstrated the involvement of Nck2 in proliferation, migration and invasion in human melanoma cells. Moreover, we discovered that Nck2 overexpression in human primary melanoma cells correlates with higher levels of proteins phosphorylated on tyrosine residues, assembly of Nck2-dependent pY-proteins-containing molecular complexes and downregulation of cadherins and integrins. Importantly, we uncovered that injection of Nck2-overexpressing human primary melanoma cells into mice increases melanoma-derived tumor growth rate.</p> <p>Conclusions</p> <p>Collectively, our data indicate that Nck2 effectively influences human melanoma phenotype progression. At the molecular level, we propose that Nck2 in human primary melanoma promotes the formation of molecular complexes regulating proliferation and actin cytoskeleton dynamics by modulating kinases or phosphatases activities that results in increased levels of proteins phosphorylated on tyrosine residues. This study provides new insights regarding cancer progression that could impact on the therapeutic strategies targeting cancer.</p
    • …
    corecore