22 research outputs found

    Pulp progenitor cell and fibroblast interactions during dentin-pulp regeneration : role of complement system activation.

    No full text
    L’activation du système complément, qui se produit à la suite d’une infection ou d’un trauma, génère de puissants signaux moléculaires capables d’initier la réaction inflammatoire. Parmi ces signaux, le fragment actif C5a permet de recruter sur le site lésé les cellules qui expriment son récepteur (le C5aR/CD88). Bien que le C5aR/CD88 soit initialement connu pour être exprimé par les cellules inflammatoires, il est établi que de nombreuses cellules non immunitaires expriment ce récepteur indiquant son implication dans d’autres processus. Nos résultats ont permis de démontrer que l’activation du système du complément au niveau de la pulpe dentaire est réalisée non seulement à partir des protéines plasmatiques mais aussi des protéines synthétisées par les fibroblastes pulpaires. Ainsi, l’activation locale du système du complément, produit à la suite d’une infection, d’un trauma ou de l’application de biomatériaux, génère du C5a qui induit la migration des cellules progénitrices. Ce travail démontre pour la toute première fois l’implication du fragment actif C5a dans le recrutement de progénitrices pulpaires, étape clef au processus de régénération pulpo-Dentinaire. Ces travaux pourraient donc constituer une piste sérieuse dans l’établissement de nouvelles thérapies permettant de cibler les cellules progénitrices au cours du processus de régénération.After tissue injury or infection, Complement activation provides powerful signals initiating the inflammatory reaction. These events are mediated by biologically active fragments such as C5a which attracts cells expressing its receptor (C5aR/CD88) to the injury site. Besides inflammatory cells as the main C5aR-Expressing cells, various tissue cells have been reported to express this receptor suggesting its involvement in other processes. In order to investigate the possible relationship between complement activation and pulp regeneration, we investigated Complement activation in the dental pulp and progenitor cell migration from their perivascular niches to the pulp injury site to initiate the regeneration process.Our results indicate that complement activation in the dental pulp is the result of both plasma and fibroblast secreted complement proteins. Thus upon local complement activation, which can occur after pathological injury or biomaterials application, C5a induces pulp progenitors’ migration which is critical in initiating the regenerative processes. To our knowledge, this is the first work to demonstrate the involvement of C5a biologically active fragment in the recruitment human pulp progenitor cells. This may provide a useful future therapeutic tool in targeting the progenitor cells in a dentin/pulp regeneration process

    Sources of Dentin-Pulp Regeneration Signals and Their Modulation by the Local Microenvironment

    No full text
    International audienceMany aspects of dentin pulp tissue regeneration have been investigated, and it has been shown that dentin pulp has a high regeneration capacity. This seems to be because of the presence of progenitor cells and inductive regeneration signals from different origins. These signals can be liberated after the acidic dissolution of carious dentin as well as from pulp fibroblasts and endothelial cells in cases of traumatic injury. Thus, both carious lesions and pulp cells provide the required mediators for complete dentin-pulp regeneration including reparative dentin secretion, angiogenesis, and innervation. Additionally, all dentin pulp insults including carious ''infection,'' traumatic injuries, application of restorative materials on the injured dentin pulp, and subsequent apoptosis are known activators of the complement system. This activation leads to the production of several biologically active fragments responsible for the vascular modifications and the attraction of immune cells to the inflammatory/injury site. Among these, C5a is involved in the recruitment of pulp progenitor cells, which express the C5a receptor. Thus, in addition to dentin and pulp cells, plasma should be considered as an additional source of regeneration signals

    C5L2 Silencing in Human Pulp Fibroblasts Enhances Nerve Outgrowth Under Lipoteichoic Acid Stimulation

    No full text
    International audienceIntroduction: We recently reported that cariesassociated C5a receptor (C5aR) expression and activation result in up-regulation of brain-derived neurotropic factor secretion by pulp fibroblasts inducing prominent neurite outgrowth toward the carious site. Our data further showed a negative regulation of this brainderived neurotropic factor secretion by C5L2, another C5aR. C5L2 was considered a nonfunctional receptor and thus has received much less attention than C5aR. The aim of this study was to identify the role of C5L2 in pulp fibroblast-mediated neurite outgrowth. Methods: In this study, lipoteichoic acid (LTA) was used to mimic dental caries-like inflammation. To evaluate the role of C5L2 in pulp neurite outgrowth, human pulp fibroblasts were C5L2 small interfering RNA silenced and cocultured with human neurons in a nerve growth assay system. Results: C5L2 silencing drastically increased the neurite outgrowth toward the LTAstimulated pulp fibroblasts. The number of neurites detected was increased in the LTA-treated pulp fibroblasts. Conclusions: Our results show that C5L2 constitutes a negative regulator of the neurite outgrowth under LTA stimulation. Of the events occurring during dentin-pulp regeneration, nerve regeneration is the key factor for maintaining tooth viability after infection or injury. Our study provides a foundation for creating therapeutic tools that target pulp fibroblasts during pulp/nerve regeneration

    Pulp Fibroblasts Synthesize Functional Complement Proteins Involved in Initiating DentinePulp Regeneration

    No full text
    International audienceThe complement system is an efficient plasma immune surveillance system that controls tissue injury and infection. Although the liver constitutes the primary circulating complement protein synthesis site, extrahepatic synthesis is known to optimize local tissue inflammatory reaction. Because dentin–pulp regeneration is known to be regulated locally, we investigated activation of the local complement system within the dental pulp and its role in initiating the regeneration process. Membrane attack complex (C5b-9) formation and Gram's staining revealed that complement activation is correlated with the presence of Gram-positive bacteria in carious human teeth. RT-PCR analysis demonstrated that cultured human pulp fibroblasts stimulated with lipoteichoic acid produce all the proteins required for efficient complement activation. This was demonstrated in vitro by C5b-9 formation and C5a active fragment production in the absence of plasma proteins. Finally, the dynamic migration assays performed in μ-Slide chemotaxis chambers and use of a C5aR-specific antagonist (W54011) demonstrated that the activation of complement proteins synthesized by pulp fibroblasts and the subsequent release of C5a specifically induced pulp progenitor cell recruitment. Our study reveals human pulp fibroblasts as the first nonimmune cell type capable of synthesizing all complement proteins. These fibroblasts cells contribute significantly to tissue regeneration by recruiting pulp progenitors via complement activation, which suggests to a potential therapeutic strategy of targeting pulp fibroblasts in dentin–pulp regeneration

    Nerve Growth Factor Secretion From Pulp Fibroblasts is Modulated by Complement C5a Receptor and Implied in Neurite Outgrowth

    Get PDF
    International audienceGiven the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation

    C5L2 Regulates DMP1 Expression during Odontoblastic Differentiation

    No full text
    International audienceThe presence of stem cells within the dental-pulp tissue as well as their differentiation into a new generation of functional odontoblast-like cells constitutes an important step of the dentin-pulp regeneration. Recent investigations demonstrated that the complement system activation participates in 2 critical steps of dentin-pulp regeneration: pulp progenitor’s recruitment and pulp nerve sprouting. Surprisingly, its implication in odontoblastic differentiation has not been addressed yet. Since the complement receptor C5a receptor-like 2 (C5L2) is expressed by different stem cells, the aim of this study is to investigate if the dental pulp stem cells express C5L2 and if this receptor participates in odontoblastic differentiation. Immunohistochemistry performed on human third molar pulp sections showed a perivascular co-localization of the mesenchymal stem cell markers STRO1 and C5L2. In vitro immunofluorescent staining confirmed that hDPSCs express C5L2. Furthermore, we determined by real-time polymerase chain reaction that the expression of C5L2 is highly modulated in human dental pulp stem cells (hDPSCs) undergoing odontoblastic differentiation. Moreover, we showed that this odontogenesis-regulated expression of C5L2 is specifically potentiated by the proinflammatory cytokine TNFα. Using a C5L2-siRNA silencing strategy, we provide direct evidence that C5L2 constitutes a negative regulator of the dentinogenic marker DMP1 (dentin matrix protein 1) expression by hDPSCs. Our findings suggest a direct correlation between the odontoblastic differentiation and the level of C5L2 expression in hDPSCs and identify C5L2 as a negative regulator of DMP1 expression by hDPSCs during the odontoblastic differentiation and inflammation processes. This work is the first to demonstrate the involvement of C5L2 in the biological function of stem cells, provides an important knowledge in understanding odontoblastic differentiation of dental pulp stem cells, and may be useful in future dentin-pulp engineering strategies

    Computational Tension Mapping of Adherent Cells Based on Actin Imaging

    No full text
    International audienceForces transiting through the cytoskeleton are known to play a role in adherent cell activity. Up to now few approaches haves been able to determine theses intracellular forces. We thus developed a computational mechanical model based on a reconstruction of the cytoskeleton of an adherent cell from fluorescence staining of the actin network and focal adhesions ( FA). Our custom made algorithm converted the 2D image of an actin network into a map of contractile interactions inside a 2D node grid, each node representing a group of pixels. We assumed that actin filaments observed under fluorescence microscopy, appear brighter when thicker, we thus presumed that nodes corresponding to pixels with higher actin density were linked by stiffer interactions. This enabled us to create a system of heterogeneous interactions which represent the spatial organization of the contractile actin network. The contractility of this interaction system was then adapted to match the level of force the cell truly exerted on focal adhesions; forces on focal adhesions were estimated from their vinculin expressed size. This enabled the model to compute consistent mechanical forces transiting throughout the cell. After computation, we applied a graphical approach on the original actin image, which enabled us to calculate tension forces throughout the cell, or in a particular region or even in single stress fibers. It also enabled us to study different scenarios which may indicate the mechanical role of other cytoskeletal components such as microtubules. For instance, our results stated that the ratio between intra and extra cellular compression is inversely proportional to intracellular tension

    Complement Activation by Pulp Capping Materials Plays a Significant Role in Both Inflammatory and Pulp Stem Cells' Recruitment

    No full text
    International audienceIntroduction: The role of complement, especially through the C5a fragment, is well-known for the initiation of inflammation. Its involvement in regeneration has been shown more recently by the recruitment of mesenchymal stem cells. C5a can be produced locally by the pulp fibroblasts in response to injury or infection. This work aims to investigate the effect of different pulp capping biomaterials on complement activation and its possible influence on inflammatory and pulp stem cell recruitment. Methods: Conditioned media were prepared from 3 pulp capping biomaterials: Biodentine (Septodont,Saint-Maur-des-Fosses, France), TheraCal (BISCO, Lancon De Provence, France), and Xeno III (Dentsply Sirona, Versaille, France). Injured pulp fibroblasts were cultured with these conditioned media to analyze C5a secretion using an enzyme-linked immunosorbent assay. Dental pulp stem cells (DPSCs) were isolated from human third molar explants by magnetic cell sorting with STRO-1 antibodies. The expression of C5a receptor on DPSCs and inflammatory (THP-1) cells was investigated by immunofluorescence. The migration of both DPSCs and THP-1 cells was studied in Boyden chambers. Results: Pulp fibroblast production of C5a significantly increased when the cells were incubated with TheraCal- and Xeno III conditioned media. The recruitment of cells involved in inflammation (THP-1 cells) was significantly reduced by Biodentine- and TheraCal-conditioned media, whereas the migration of DPSCs was reduced with TheraCal- and Xeno III conditioned media but not with that of Biodentine. The involvement of C5a in cell recruitment is demonstrated with a C5a receptor specific antagonist (W54011). Conclusions: After pulp injury, the pulp capping material affects complement activation and the balance between inflammation and regeneration through a differential recruitment of DPSCs or inflammatory cells
    corecore