1,620 research outputs found

    Benthic community structure and sea urchin distribution : the bay of Diego-Suarez / Mrowicki, R.J., & Fanning, E. (eds)

    Get PDF
    The Bay of Diego-Suarez, considered to be one of the finest and largest natural harbours in the world, is located towards the northernmost tip of Madagascar in the Antsiranana province. Despite its historical and current use as a port, much of its convoluted perimeter is still somewhat untouched, harbouring pristine shorelines and subtidal coral reefs. The position of the bay between other regions in which high marine biodiversity has already been revealed suggests that it may also harbour high biodiversity. However, the relatively long coastline and limited connectivity of the bay with the Indian Ocean, in combination with existing anthropogenic activities, potentially make its marine environments susceptible to a range of environmental impacts including sedimentation, nutrification and pollution. The Frontier-Madagascar Marine Research Programme (FMMRP) became involved in conducting marine ecological survey work in the Bay of Diego-Suarez, north Madagascar, in April 2005, having relocated from its previous base at Anakao in southwest Madagascar. The rationale for the survey programme stemmed from the affiliation of the FMMRP with the Malagasy organisations Association Nationale pour la Gestion des Aires Protégées (ANGAP) and Service d’Appui a la Gestion de l’Environnement (SAGE), who were interested in identifying areas of the bay with particularly healthy coral reef systems. Additional environmental interest in the bay has arisen as a result of its proximity to surrounding terrestrial protected areas such as the newly managed Ramena complex, incorporating Orangea and Montagne des Français, and also Montagne d’Ambre. Since its relocation to the Diego-Suarez area, the FMMRP has compiled over two years’ worth of marine ecological data relating to benthic community composition, fish species abundance and population size structure, frequency of algae and invertebrate indicator species, and physical environmental parameters. Thus there exists an extensive dataset for the Bay of Diego-Suarez, from which details of the current condition of its marine habitats can be investigated and a baseline for temporal monitoring can be established. The primary purpose of this report is to signify the initial detailed dissection of the dataset and demonstrate the conclusions that can be made regarding the ecological status of coral reef systems within the bay. This has mostly involved the examination of benthic data, focusing upon variations in percentage cover of substrata and coral community characteristics as useful structural indicators of reef condition. Additionally, the report includes an assessment of the abundance and distribution of sea urchins and their relation to benthic community patterns, as a demonstration of the ability to interrelate different aspect of the FMMRP dataset to enhance the conclusions that can be drawn. Benthic community data were obtained from 380 line intercept transects conducted in different sectors of the Bay of Diego-Suarez between October 2005 and December 2007, representing a combined distance of 7,600 m. Sediment occupied the greatest overall proportion of the benthos (around 38%), especially in the western areas of the bay. Overall mean hard coral cover was around 15%, and tended to co-vary with other ‘hard’ substrata such as rock and rubble. In total, 38 scleractinian coral genera were recorded during survey work, in addition to a number of unidentified genera. The coral communities of the bay were dominated by Acropora and Porites spp., which comprised around 33% and 20% of total recorded hard coral cover, respectively. Hard coral cover and generic diversity appeared to be positively related. These indicators were greatest in the northeast area opposite the mouth of the bay, reaching mean values of around 37% and 6.8 genera, respectively. Here, the hard coral community was dominated by Acropora spp. and comprised a relatively high proportional cover of Galaxea spp. In the northwest of the bay, coral cover was approximately half as great and consisted primarily of species belonging to the genera Porites and Millepora. Habitats in this area were highly similar in terms of their overall coral community composition. Hard coral cover and diversity were generally lower in the southern portion of the bay, especially in more immediate proximity to the population centre of Diego-Suarez (around 2% and 1.5- 5.5 genera, respectively). Coral community composition was considerably more variable than in the northern portion of the bay. v After sediment and ‘hard’ substrata, seagrass formed the next major interplaying component of the benthic environment (around 10% overall proportional cover). The easternmost areas adjacent to the mouth of the bay were characterised by high seagrass cover, whic h reached around 48%. Little or no seagrass was encountered elsewhere, except at one locality in the northwest (around 13% cover). Macroalgae cover was low and less variable, reaching a maximum value of around 10% adjacent to Diego-Suarez. There were no differences between island and mainland sites in terms of overall benthic substratum characteristics, yet soft coral cover was significantly greater amongst island sectors. Sea urchin abundance data were obtained from 498 belt transects conducted between April 2006 and December 2007, representing a total area of 49,800 m2. A total of 6 species were recorded, of which Diadema setosum comprised by far the greatest relative abundance (96%) and observation frequency (55%). The greatest population densities of this species were encountered in the more exposed areas in the west and northwest, reaching around 1.5 m-2, and very few individuals were recorded in the eastern reaches. Data suggest a possible seasonal increase in D. setosum densities, corresponding with an increase in water temperature towards the end of the year. No significant correlation existed between D. setosum population density and coral cover, although these seemed to be inversely related in the central northern area of the bay. There was also no significant correlation with macroalgae cover. However, D. setosum density was positively and negatively associated with rubble and seagrass cover, respectively. There was a lack of a clear pattern amongst sectors with respect to overall benthic community characteristics, let alone between the density of D. setosum and benthic substratum composition. In conclusion, a relatively detailed map of benthic community composition has been produced for the Bay of Diego-Suarez, which shall be useful in elucidating the primary factors determining the condition of marine environments within the bay and developing effective sustainable management strategies. Further analysis, incorporating additional components of the FMMRP dataset, is required in order to further clarify our understanding of the key issues surrounding the current status of these coral reef systems. It is hoped that continued survey work will enable important long-term ecological monitoring of the marine environment of the bay and assessment of the effectiveness of any management initiatives that may be implemented

    A germline TaqI restriction fragment length polymorphism in the progesterone receptor gene in ovarian carcinoma.

    Get PDF
    Clinical outcome in ovarian carcinoma is predicted by progesterone receptor status, indicating an endocrine aspect to this disease. Peripheral leucocyte genomic DNAs were obtained from 41 patients with primary ovarian carcinoma and 83 controls from Ireland, as well as from 26 primary ovarian carcinoma patients and 101 controls in Germany. Southern analysis using a human progesterone receptor (hPR) cDNA probe identified a germline TaqI restriction fragment length polymorphism (RFLP) defined by two alleles: T1, represented by a 2.7 kb fragment; and T2, represented by a 1.9 kb fragment and characterised by an additional TaqI restriction site with respect to T1. An over-representation of T2 in ovarian cancer patients compared with controls in the pooled Irish/German population (P < 0.025) was observed. A difference (P < 0.02) in the distribution of the RFLP genotypes between Irish and German control populations was also observed. The allele distributions could not be shown to differ significantly from Hardy-Weinberg distribution in any subgroup. Using hPR cDNA region-specific probes, the extra TaqI restriction site was mapped to intron G of the hPR gene

    The Gondwana connections of northern Patagonia

    Get PDF
    A multidisciplinary study (U–Pb sensitive high-resolution ion microprobe geochronology, Hf and O isotopes in zircon, Sr and Nd isotopes in whole-rocks, as well as major and trace element geochemistry) has been carried out on granitoid samples from the area west of Valcheta, North Patagonian Massif, Argentina. These confirm the Cambrian age of the Tardugno Granodiorite (528 ± 4 Ma) and the Late Permian age of granites in the central part of the Yaminué complex (250 Ma). Together with petrological and structural information for the area, we consider a previously suggested idea that the Cambrian and Ordovician granites of northeastern Patagonia represent continuation of the Pampean and Famatinian orogenic belts of the Sierras Pampeanas, respectively. Our interpretation does not support the hypothesis that Patagonia was accreted in Late Palaeozoic times as a far-travelled terrane, originating in the Central Transantarctic Mountains, and the arguments for and against this idea are reviewed. A parautochthonous origin is preferred with no major ocean closure between the North Patagonian Massif and the Sierra de la Ventana fold belt.Centro de Investigaciones GeológicasConsejo Nacional de Investigaciones Científicas y Técnica

    A history of Proterozoic terranes in southern South America: From Rodinia to Gondwana

    Get PDF
    The role played by Paleoproterozoic cratons in southern South America from the Mesoproterozoic to the Early Cambrian is reconsidered here. This period involved protracted continental amalgamation that led to formation of the supercontinent Rodinia, followed by Neoproterozoic continental break-up, with the consequent opening of Clymene and Iapetus oceans, and finally continental re-assembly as Gondwana through complex oblique collisions in the Late Neoproterozoic to Early Cambrian. The evidence for this is based mainly on a combination of precise U-Pb SHRMP dating and radiogenic isotope data for igneous and metamorphic rocks from a large area extending from the Rio de la Plata craton in the east to the Argentine Precordillera in the west and as far north as Arequipa in Peru. Our interpretation of the paleogeographical and geodynamic evolution invokes a hypothetical Paleoproterozoic block (MARA) embracing basement ultimately older than 1.7 Ga in the Western Sierras Pampeanas (Argentina), the Arequipa block (Peru), the Rio Apa block (Brazil), and probably also the Paraguaia block (Bolivia).Centro de Investigaciones Geológica

    Genome sequence of an Enterobacter helveticus strain, 1159/04 (= LMG 23733), isolated from fruit powder

    Full text link
    We report the draft genome sequence of Enterobacter helveticus strain LMG 23733, isolated from fruit powder. The draft genome assembly for E. helveticus strain LMG 23733 has a size of 4,635,476 bp and a G+C content of 55.9%

    The interactive effects of fertiliser nitrogen with dung and urine on nitrous oxide emissions in grassland

    Get PDF
    The authors wish to thank the Environmental Protection Agency for funding support under the Environmental Research Technological Development and Innovation programme and the Irish Department of Agriculture, Food and the Marine for funding support (Grant numbers RSF 13S430 and 11S138).peer-reviewedNitrous oxide (N2O) is an important and potent greenhouse gas (GHG). Although application of nitrogen (N) fertiliser is a feature of many grazing systems, limited data is available on N2O emissions in grassland as a result of the interaction between urine, dung and fertiliser N. A small plot study was conducted to identify the individual and interactive effects of calcium ammonium nitrate (CAN) fertiliser, dung and urine. Application of CAN with dung and urine significantly increased the mass of N2O-N emission. Importantly, the sum of N2O-N emitted from dung and CAN applied individually approximated the emission from dung and CAN fertiliser applied together, that is, an additive effect. However, in the case of urine and CAN applied together, the emission was more than double the sum of the emission from urine and CAN fertiliser applied individually, that is, a multiplicative effect. Nitrous oxide emissions from dung, urine and fertiliser N are typically derived individually and these individual emission estimates are aggregated to produce estimates of N2O emission. The presented findings have important implications for how individual emission factors are aggregated; they suggest that the multiplicative effect of the addition of CAN fertiliser to urine patches needs to be taken into account to refine the estimation of N2O emissions from grazing grasslands.The authors wish to thank the Environmental Protection Agency for funding support under the Environmental Research Technological Development and Innovation programme and the Irish Department of Agriculture, Food and the Marine for funding support (Grant numbers RSF 13S430 and 11S138)
    corecore