543 research outputs found

    Signaling in natural killer cells: SHIP, 2B4 and the Kinome

    Get PDF
    The NK cell is a large granular lymphocyte that plays a key role in protecting the body against numerous pathogens including parasites, intracellular bacteria, viral infections, as well as showing anti-tumor activity and playing a role in the rejection of allogeneic BM. Unlike other lymphocytic cell types, that utilize rearranging receptors, NK cells are regulated by a complex array of germ line encoded activating and inhibitory receptors. NK cells are often described as a front line or rapid defense given their response to stimuli can be immediate, although they also maintain functions that extend their role well into the adaptive immune system. Inhibitory receptors that recognize MHC class I molecules regulate NK cell responses and self-tolerance. Recent evidence indicates self-ligands not present in the MHC locus can also modulate NK function. We previously demonstrated that the NK receptor repertoire is disrupted by SHIP-deficiency. Here we show that an inhibitory receptor, 2B4, that recognizes an MHC-independent ligand is over expressed in NK cells of SHIP-/- mice at all stages of NK development and differentiation. Overexpression of 2B4 compromises key cytolytic NK functions, including killing of allogeneic, tumor and viral targets. These results demonstrate that in SHIP-/- NK cell 2B4 is the dominant inhibitory receptor. We then furthered this finding by examining the molecular basis of 2B4 dominance. We show that in SHIP-/- NK cells there is increased 2B4 expression as well as a strong bias towards the 2B4L isoform. We have also identified a greater than tenfold increase in SHP1 recruitment to 2B4. Consistent with this SHP1 over recruitment,both a broad and a selective SHP1 inhibitor restore SHIP-/- NK killing of complex targets.Through this study we have identified the molecular mechanism of 2B4 receptor dominance as SHP1 over-recruitment.In addition we have utilized protein array technology to explore NK signaling through the determination of the NK kinome. To this end we have been able to identify multiple pathways that may mark crucial differences between the mature and immature NK cell

    modCHIMERA: A novel murine closed-head model of moderate traumatic brain injury

    Get PDF
    AbstractTraumatic brain injury is a major source of global disability and mortality. Preclinical TBI models are a crucial component of therapeutic investigation. We report a tunable, monitored model of murine non-surgical, diffuse closed-head injury—modCHIMERA—characterized by impact as well as linear and rotational acceleration. modCHIMERA is based on the Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA) platform. We tested this model at 2 energy levels: 1.7 and 2.1 Joules—substantially higher than previously reported for this system. Kinematic analysis demonstrated linear acceleration exceeding injury thresholds in humans, although outcome metrics tracked impact energy more closely than kinematic parameters. Acute severity metrics were consistent with a complicated-mild or moderate TBI, a clinical population characterized by high morbidity but potentially reversible pathology. Axonal injury was multifocal and bilateral, neuronal death was detected in the hippocampus, and microglial neuroinflammation was prominent. Acute functional analysis revealed prolonged post-injury unconsciousness, and decreased spontaneous behavior and stimulated neurological scores. Neurobehavioral deficits were demonstrated in spatial learning/memory and socialization at 1-month. The overall injury profile of modCHIMERA corresponds with the range responsible for a substantial portion of TBI-related disability in humans. modCHIMERA should provide a reliable platform for efficient analysis of TBI pathophysiology and testing of treatment modalities.</jats:p

    1H NMR Spectroscopy and MVA Analysis of Diplodus sargus Eating the Exotic Pest Caulerpa cylindracea

    Get PDF
    6noThe green alga Caulerpa cylindracea is a non-autochthonous and invasive species that is severely affecting the native communities in the Mediterranean Sea. Recent researches show that the native edible fish Diplodus sargus actively feeds on this alga and cellular and physiological alterations have been related to the novel alimentary habits. The complex effects of such a trophic exposure to the invasive pest are still poorly understood. Here we report on the metabolic profiles of plasma from D. sargus individuals exposed to C. cylindracea along the southern Italian coast, using 1H NMR spectroscopy and multivariate analysis (Principal Component Analysis, PCA, Orthogonal Partial Least Square, PLS, and Orthogonal Partial Least Square Discriminant Analysis, OPLS-DA). Fish were sampled in two seasonal periods from three different locations, each characterized by a different degree of algal abundance. The levels of the algal bisindole alkaloid caulerpin, which is accumulated in the fish tissues, was used as an indicator of the trophic exposure to the seaweed and related to the plasma metabolic profiles. The profiles appeared clearly influenced by the sampling period beside the content of caulerpin, while the analyses also supported a moderate alteration of lipid and choline metabolism related to the Caulerpa-based diet.openopenS. A. De Pascali; L. Del Coco; S. Felline; E. Mollo; A. Terlizzi; F. P. FanizziS. A., De Pascali; L., Del Coco; S., Felline; E., Mollo; Terlizzi, Antonio; F. P., Fanizz

    Novel antiproliferative biphenyl nicotinamide: NMR metabolomic study of its effect on the MCF-7 cell in comparison with cisplatin and vinblastine

    Get PDF
    A 1H-NMR-based metabolomic study was performed on MCF-7 cell lines treated with a novel nicotinamide derivative (DT-8) in comparison with two drugs characterized by a well-established mechanism of action, namely the DNA-metalating drug cisplatin (cis-diamminedichloridoplatinum(II), CDDP) and the antimitotic drug vinblastine (vinblastine, VIN). The effects of the three compounds, each one at the concentration corresponding to the IC50 value, were investigated, with respect to the controls (K), by the 1H-NMR of cells lysates and multivariate analysis (MVA) of the spectroscopic data. Relevant differences were found in the metabolic profiles of the different treatments with respect to the controls. A large overlap of the metabolic profiles in DT-8 vs. K and VIN vs. K suggests a similar biological response and mechanism of action, significantly diverse with respect to CDDP. On the other hand, DT8 seems to act by disorganizing the mitotic spindle and ultimately blocking the cell division, through a mechanism implying methionine depletion and/or S-adenosylmethionine (SAM) limitation

    The response of the algae Fucus virsoides (Fucales, Ochrophyta) to Roundup® solution exposure: A metabolomics approach

    Get PDF
    8noGlyphosate, as a broad-spectrum herbicide, is frequently detected in water and several studies have investigated its effects on several freshwater aquatic organisms. Yet, only few investigations have been performed on marine macroalgae. Here, we studied both the metabolomics responses and the effect on primary production in the endemic brown algae Fucus virsoides exposed to different concentration (0, 0.5, 1.5 and 2.5 mg L−1) of a commercial glyphosate-based herbicide, namely Roundup®. Our results show that Roundup® significantly reduced quantum yield of photosynthesis (Fv/Fm) and caused alteration in the metabolomic profiles of exposed thalli compared to controls. Together with the decrease in the aromatic amino acids (phenylalanine and tyrosine), an increase in shikimate content was detected. The branched-amino acids differently varied according to levels of herbicide exposure, as well as observed for the content of choline, formate, glucose, malonate and fumarate. Our results suggest that marine primary producers could be largely affected by the agricultural land use, this asking for further studies addressing the ecosystem-level effects of glyphosate-based herbicides in coastal waters.partially_openopenFelline, Serena; Del Coco, Laura; Kaleb, Sara; Guarnieri, Giuseppe; Fraschetti, Simonetta; Terlizzi, Antonio; Fanizzi, Francesco Paolo; Falace, AnnalisaFelline, Serena; Del Coco, Laura; Kaleb, Sara; Guarnieri, Giuseppe; Fraschetti, Simonetta; Terlizzi, Antonio; Fanizzi, Francesco Paolo; Falace, Annalis

    Harvest year effects on Apulian EVOOs evaluated by (1)H NMR based metabolomics

    Get PDF
    none5noNine hundred extra virgin olive oils (EVOO) were extracted from individual olive trees of four olive cultivars (Coratina, Cima di Mola, Ogliarola, Peranzana), originating from the provinces of Bari and Foggia (Apulia region, Southern Italy) and collected during two consecutive harvesting seasons (2013/14 and 2014/15). Following genetic identification of individual olive trees, a detailed Apulian EVOO NMR database was built using 900 oils samples obtained from 900 cultivar certified single trees. A study on the olive oil lipid profile was carried out by statistical multivariate analysis (Principal Component Analysis, PCA, Partial Least-Squares Discriminant Analysis, PLS-DA, Orthogonal Partial Least-Squares Discriminant Analysis, OPLS-DA). Influence of cultivar and weather conditions, such as the summer rainfall, on the oil metabolic profile have been evaluated. Mahalanobis distances and J2 criterion have been measured to assess the quality of resulting scores clusters for each cultivar in the two harvesting campaigns. The four studied cultivars showed non homogeneous behavior. Notwithstanding the geographical spread and the wide number of samples, Coratina showed a consistent behavior of its metabolic profile in the two considered harvests. Among the other three Peranzana showed the second more consistent behavior, while Cima di Mola and Ogliarola having the biggest change over the two years.Girelli, Chiara R; Del Coco, Laura; Papadia, Paride; De Pascali, Sandra A; Fanizzi, Francesco PGirelli, CHIARA ROBERTA; DEL COCO, Laura; Papadia, Paride; DE PASCALI, SANDRA ANGELICA; Fanizzi, Francesco Paol

    First evidence for N7-Platinated Guanosine derivatives cell uptake mediated by plasma membrane transport processes

    Get PDF
    Nucleos(t)ide analogues (NA) belong to a family of compounds widely used in anticancer/antiviral treatments. They generally exhibit a cell toxicity limited by cellular uptake levels and the resulting nucleos(t)ides metabolism modifications, interfering with the cell machinery for nucleic acids synthesis. We previously synthesized purine nucleos(t)ide analogues N7-coordinated to a platinum centre with unaltered sugar moieties of the type: [Pt(dien)(N7-dGuo)]2+ (1; dien = diethylenetriamine; dGuo = 2′-deoxy-guanosine), [Pt(dien)(N7-dGMP)] (2; dGMP = 5′-(2′-deoxy)-guanosine monophosphate), and [Pt(dien)(N7-dGTP)]2− (3; dGTP = 5′-(2′-deoxy)-guanosine triphosphate), where the indicated electric charge is calculated at physiological pH (7.4). In this work, we specifically investigated the uptake of these complexes (1–3) at the plasma membrane level. Specific experiments on HeLa cervical cancer cells indicated a relevant cellular uptake of the model platinated deoxynucleos(t)ide 1 and 3 while complex 2 appeared unable to cross the cell plasma membrane. Obtained data buttress an uptake mechanism involving Na+-dependent concentrative transporters localized at the plasma membrane level. Consistently, 1 and 3 showed higher cytotoxicity with respect to complex 2 also suggesting selective possible applications as antiviral/antitumor drugs among the used model compounds

    Treated Unconventional Waters Combined with Different Irrigation Strategies Affect 1 H NMR Metabolic Profile of a Monovarietal Extra Virgin Olive Oil

    Get PDF
    none8noThe agricultural sector is facing a decrease in water supply and water quality at a global level and this is a problem that strictly affects all the Mediterranean olive growing areas. The aim of this work was to evaluate, for the first time, by NMR Spectroscopy and multivariate data analysis the metabolic profiling of the oils produced under different irrigation schemes. Arbosana olive oils were obtained from the use of saline reclaimed water (RW) and treated municipal wastewater (DW), combined with: full irrigation (FI) and regulated deficit irrigation (RDI). The results show a higher relative content of saturated fatty acids in EVOOs obtained from RDI strategy, regardless of the water source. Moreover, an increase in unsaturated fatty acids, a ω6/ω3 ratio content was observed in EVOOs obtained from RW when compared with DW water. Furthermore, the RW–RDI showed an increase in secoiridoid derivatives and hydroperoxides with respect to DW–RDI. A sustainable irrigation management, by combining a deficit irrigation strategy and saline reclaimed water source, could be crucial in order to overcome the problem of water scarcity and to guarantee the olive oil nutraceutical properties. The1 H NMR-based metabolomic approach proved a powerful and versatile tool for this specific investigation.openAngile F.; Vivaldi G.A.; Girelli C.R.; Del Coco L.; Caponio G.; Lopriore G.; Fanizzi F.P.; Camposeo S.Angile, F.; Vivaldi, G. A.; Girelli, C. R.; Del Coco, L.; Caponio, G.; Lopriore, G.; Fanizzi, F. P.; Camposeo, S
    • …
    corecore