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Signaling in Natural Killer Cells: 
SHIP, 2B4 and the Kinome 

 
Joseph A. Wahle 

 
ABSTRACT 

 
 
 

 The NK cell is a large granular lymphocyte that plays a key role in protecting the 

body against numerous pathogens including parasites, intracellular bacteria, viral 

infections, as well as showing anti-tumor activity and playing a role in the rejection of 

allogeneic BM.  Unlike other lymphocytic cell types, that utilize rearranging receptors, 

NK cells are regulated by a complex array of germ line encoded activating and inhibitory 

receptors.  NK cells are often described as a front line or rapid defense given their 

response to stimuli can be immediate, although they also maintain functions that extend 

their role well into the adaptive immune system.   

 

 Inhibitory receptors that recognize MHC class I molecules regulate NK cell 

responses and self-tolerance.  Recent evidence indicates self-ligands not present in the 

MHC locus can also modulate NK function.  We previously demonstrated that the NK 

receptor repertoire is disrupted by SHIP-deficiency.  Here we show that an inhibitory 

receptor, 2B4, that recognizes an MHC-independent ligand is over expressed in NK cells 

of SHIP-/- mice at all stages of NK development and differentiation.  Overexpression of 



 - ix - 

2B4 compromises key cytolytic NK functions, including killing of allogeneic, tumor and 

viral targets.  These results demonstrate that in SHIP-/- NK cell 2B4 is the dominant 

inhibitory receptor.   

 

We then furthered this finding by examining the molecular basis of 2B4 

dominance. We show that in SHIP-/- NK cells there is increased 2B4 expression as well 

as a strong bias towards the 2B4L isoform.  We have also identified a greater than ten-

fold increase in SHP1 recruitment to 2B4. Consistent with this SHP1 over recruitment, 

both a broad and a selective SHP1 inhibitor restore SHIP-/- NK killing of complex targets.  

Through this study we have identified the molecular mechanism of 2B4 receptor 

dominance as SHP1 over-recruitment.   

 

 In addition we have utilized protein array technology to explore NK signaling 

through the determination of the NK kinome.  To this end we have been able to identify 

multiple pathways that may mark crucial differences between the mature and immature 

NK cell.    
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Chapter 1 

Introduction 

 

Early NK Studies 

Discovery of NK Cells 

 The first studies identifying what would eventually be termed the natural killer 

cell (NK) were performed just over 20 years ago.  These first studies were following in 

the steps of intriguing questions raised by the concept of natural cytotoxicity.  Early 

adoptive transfer experiments in which the transplanted tumors were rejected were 

thought to rely on the presence of T cells (1-6).  In line with this theory it was 

hypothesized that athymic and/or nude mice, which lack T cells, would have a 

dramatically increased number of tumors after these adoptive transfers.  This unimpeded 

growth of tumors in a T cell deficient mouse was never realized, indicating that it was not 

the T cell that was limiting the expansion of these adoptively transferred tumor cells (7-

9).  This lead people to hypothesize that there must be an alternate cell type at play.  

Another interesting phenomenon was occurring within these adoptive transfer 

experiments.  Much of the reason that the rejection of the tumors was being attributed to 

the T cell was that many of the hosts, of the tumor transplants, had been previously 

immunized or exposed to the tumors.  This ability to destroy a previously immunized 

against antigen is a hallmark of T cells and the adaptive immune response (10, 11).  In 
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contrast to this it was found that although these previously immunized hosts could reject 

the tumors, rejection was also seen in non-immunized hosts (12-14).  This ability to lyse 

tumor targets without prior immunization by this yet to be identified cell type is what was 

termed natural cytotoxicity.  Further studies were able to attribute this natural 

cytotoxicity to a distinct population of lymphoid cells (15-19).  In these studies various 

groups identified a cell that remained after elimination of T and B cells from whole 

splenocytes.  The remaining cells, which had a small lymphoid like appearance, retained 

the ability, in vitro, to lyse a large number of virally induced tumors as well as other 

tumor samples.  The key to these studies was that once again like in the rejection of 

adoptively transferred tumors, prior immunization was not necessary and therefore was 

natural cytotoxicity.  This small lymphoid like cell, that was neither T nor B cell, was 

therefore termed a natural killer cell or NK cell. 

 

Missing Self Hypothesis 

 Although the NK cell had been identified, the manner in which it functioned 

remained unknown.  One area that was puzzling was that NK cells had varied 

cytotoxicity to cells of differing major histocompatibility complex (MHC) backgrounds. 

The initial answer to this problem would come when Karre and Ljunggren proposed their 

missing self hypothesis (20, 21).  The missing self hypothesis has its origins in a puzzling 

question raised many years earlier, which was hybrid resistance.  Hybrid resistance refers 

to a phenomenon where an F1 hybrid from parents of different MHC background is able 

to reject bone marrow (BM) transplants from both parents (22, 23).  Specifically an H-

2a/a crossed with an H-2b/b would result in a heterozygous mouse with an H-2a/b 
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haplotype.  BM cells transplanted into the F1 hybrid from either the H-2a/a or H-2b/b 

parent would be rejected.  These studies provided an initial foray into the concept of self 

vs. non-self recognition by the NK cell.  Further evidence for the missing self hypothesis 

was obtained through numerous studies in which it was found that NK cells could kill 

tumor lines that had diminished or no MHC expression (24-28).  This idea was novel, as 

the traditional concept established in T cells, maintained that you needed the MHC 

molecules as well as peptide bound in its cleft in order elicit a cytotoxic effect.  In their 

studies Karre and colleagues generated MHC deficient cells lines in order to test, in vitro, 

the ability of the NK cell to lyse MHC null targets (29).  Through these studies they were 

able to determine that the presence of a self-MHC inhibited NK mediated cytotoxicity.  

In addition they introduced H-2Dd transgenes into Bl6 H-2b mice to determine the effect 

on the rejection of BM transplants (20).  In these studies they found that the insertion of 

the H-2Dd transgene was able to confer resistance to allogeneic BM into an H-2Dd 

mouse.  With their studies and the other information present they proposed the concept 

that an NK cell utilizes recognition of the MHC molecules to identify self vs. non-self 

cells and thereby protecting self cells while retaining the ability to lyse non-self cells 

(21).  They termed this the missing self hypothesis.   
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Figure 1.  NK cell signaling outcomes.  NK effector functions are determined by the 

specific ligands present on the target cell.  A) A normal self cell expressing the 

appropriate inhibitory self ligand (MHC) alone, thereby not eliciting an NK response.  B) 

A cell expressing an activating ligand in the absence of a self ligand which would 

activate the NK cell.  C) A more complex situation in which both an activating ligand as 

well as self-MHC are present.  The outcome of this situation would depend upon the 

balance of the receptors as well as the entire signaling milieu present.  D) A situation that 

would occur in a B2M-/- mouse in which neither MHC or activating ligands are present 

on the cell surface.  Inhibition would therefore be mediated through other mechanisms 

including non-classical self-receptors such as 2B4.    
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NK Recognition 

 The missing-self hypothesis was a major step forward in the NK field.  Although 

it did not indicate how an NK cell would recognize the MHC, it did predict the presence 

of an inhibitory type receptor that would mediate MHC recognition.  This prediction was 

manifested with the discovery of the first NK receptors (NKR) for self ligands.  One of 

the first NKR identified was the Ly49 receptor (30).  This early study identified a 

receptor that was found on 20% of NK1.1+ CD3- NK cells from C57BL/6 mice.  When 

functional studies were performed it was found that the expression of Ly49 had a 

functional consequence on the ability of NK cells to lyse certain targets.  Specifically the 

presence of this receptor inhibited the lysis of H-2Dd positive targets (31).  This study 

provided one of the first insights into how the NK cell would be able to identify and lyse 

the appropriate targets based on MHC expression.  Within these first studies they 

identified only one NKR, but proved a key concept, which was that an inhibitory receptor 

could recognize a self-MHC and thereby protect a self-cell.  Although this greatly 

supported the missing self hypothesis it only provided part of the whole story.  According 

to it any cell with lowered or lacking MHC expression would be susceptible to NK 

attack.  Though the process has proven to be more complex as we see in mice lacking 

MHC, such as the B2M-/- mouse, where even with the lack of MHC molecules there is 

not NK auto reactivity (32, 33).  This indicates that there is a more complex process in 

place necessitating a balance within the NK cell of both activating and inhibitory 

receptors, as well as the possibility of proper licensing and/or education that will be 

discussed shortly.  To date a large number of receptors present on the NK cell have been 
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identified providing for both inhibition, through recognition of MHC and non-MHC 

molecules as well as activation through activating receptors. 

   

Self-MHC Receptors 

Ly49s 

 In the mouse the most prevalent self-MHC receptors are the Ly49s. Ly49s are 

members of the C-type lectin family and are type II transmembrane glycoproteins that are 

expressed as disulfide linked homodimers on the cell surface (34-36).  Genetic studies of 

the chromosomal location of the Ly49 gene yielded the finding that Ly49 is actually a 

member of a larger gene family encoded on mouse chromosome 6 in a region termed the 

NK complex (NKC) (30, 37, 38).  Much work has been done since these initial studies 

identifying and providing examinations of the functions of the Ly49 receptor family.  The 

Ly49s are a highly related gene family consisting of at least 14 family members, in the 

BL6 mouse, all of which are encoded within the NKC (30, 34-36, 39-45).  Most of the 

receptors within this family are inhibitory receptors with few exceptions i.e. Ly49 D and 

H (46, 47).  It was identified early on that the different receptors within this complex 

have a variegated expression and function.  One of the first studies demonstrated this by 

identifying in addition to the original Ly49, which was termed Ly49A, there was also a 

Ly49B and Ly49C.  An important aspect of this study was not only that they discovered 

these new receptors but also that they showed Ly49A and Ly49C could be expressed on 

varying subsets of NK1.1+ CD3- cells (48).  This provided a concept that different NK 

cells may have different combinations of these receptors and therefore the ability to 
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respond differently depending on the ligand present.  

 

 The actual specificity to one or more MHC molecules depends upon the particular 

Ly49 receptor, with some displaying more or less promiscuity than others.  Ly49A for 

instance has been shown to bind to H-2Dd, H-2Dk, and H-2K (31, 49-52) and Ly49C has 

been shown to bind to H-2Kb as well as H-2b, H-2d, H-2k,H-2s (35, 39, 53-56).  Some 

Ly49s show more specificity to a limited number of ligands such as Ly49G2 which binds 

to H-2Dd and H-2Ld (34, 57), and Ly49I which binds to H-2Kb  (53).  An important aspect 

of all of these interactions is that this list does not represent the penultimate specificities 

of these receptors.  Second, and more importantly it does not detail the relevance and or 

strength of these interactions, which could play a crucial role in the outcome they elicit. 

 

 The manner in which an NK cell expresses varying Ly49s on its cell surface is a 

unique and variegated system.  RT-PCR studies have shown that each NK cell in a 

population expresses on average 1 to 4 different Ly49s (58).  The expression system in 

place for the Ly49’s allows for their expression in a monoallelic fashion through a system 

of probabilistic switches (59-61).  The probabilistic switch is manifested through the use 

of a bidirectional promoter for each Ly49 (61).  These promoters can function in the 

forward (On) position where they from a viable transcript or in the reverse (Off) position 

where a non-coding transcript is formed.  Through competitive binding of promoter 

elements such as, CAAT/enhancer binding protein (C/EBP) or TATA-binding protein 

(TBP), on overlapping portions of the bidirectional promoters they are able to effect these 

probabilistic switches as well as lock the promoters in the established direction in the 
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mature NK cell (61).   Conflicting results exist as to whether cytokines can induce a 

change in the Ly49 repertoire that has been established in a mature NK cell.  Some 

studies have shown that once an NK cell has established its Ly49 repertoire it maintains it 

throughout its clonal progeny (62, 63).  Other studies have shown that some receptors, 

such as Ly49E and F can be induced to change their expression levels through cytokines 

such as IL-2 and IL-15 (64).  Other receptors may also undergo a change in surface 

density following cytokine stimulation.   

 

An interesting facet of the variegated expression of Ly49s across an entire 

population of NK cells is that each cell will have a different potential to react to a target.  

In theory some NK cells may not possess an appropriate inhibitory Ly49 at all.  This very 

situation has been realized such that a small population of NK cells within the normal 

population of cells does not express a known inhibitory Ly49 (65, 66).  Based on the 

known information this could theoretically lead to an NK cell that is autoreactive.  This 

very phenomenon has led to a debated area within the NK field, which is the concept of 

licensing, education and/or tolerance (65-67).  In generalized terms what these theories 

state is that for an NK cell to become fully functional it must posses a self-receptor. For 

licensing the presence of a self-MHC receptor confers an ability or license upon the NK 

cell to become fully cytotoxic (65), for tolerance the absence of the self receptor renders 

the cell hyporesponsive (66), education similar to licensing dictates that the presence of 

the self-MHC receptor is necessary for the NK cell to become fully cytotoxic (57).  

Although these theories have slightly different methods through which an NK cell 
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achieves this functional state, they agree that for an NK cell to become fully functional it 

must posses a self-receptor.  A key outcome of these studies is that even though NK cells 

do not rearrange their receptors, rather using supposedly more basic germ line encoded 

receptors, they still undergo a complex process of regulation that assures the proper cells 

and receptors are functioning in the appropriate manner.  

 

 A remaining question for the Ly49 receptors is what do they actually recognize on 

the MHC molecule and like the T cell receptor is there specificity to the peptide being 

presented.  The Ly49A receptor has been shown to interact at two sites on H-2Dd.  The 

first being within the α1 and α2 domains, and the second site of interaction involving the 

α1, α2, α3 and β2-M domains of the MHC (68, 69).  This specificity may only hold true 

for this specific interaction, as the Ly49C recognition of H-2Kb does not exhibit the same 

interaction sites (70).  The necessity of a peptide being present is also not completely 

clear.  It has been shown that for the Ly49A receptor, a peptide is necessary, but the 

actual peptide sequence seems to have no bearing (56, 71).  Where Ly49 C and Ly49I 

seem to be more reliant on a peptide being present to bind properly (56, 72, 73). 

  

 Although the Ly49s consist of numerous receptors that recognize a variety of 

different ligands, their cytoplasmic portions as well as the signaling pathways they 

activate are highly conserved.  The cytoplasmic portion of the inhibitory Ly49s contain 

immunoreceptor tyrosine-based inhibition motifs (ITIM) with the consensus sequence of 

I/S/T/LxYxxL/V (74, 75).  Upon ligand engagement these ITIMs become phosphorylated 

allowing for the recruitment of SH2 domain containing proteins.  These phospho-
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tyrosines are able to recruit the phosphatases SHP1, SHP2 and SHIP.  SHP1 and 2 are 

then able to abrogate the downstream signaling cascades of activating receptors through 

dephosphorylation of protein tyrosine kinases (PTK) (74-79).  Where SHIP could 

abrogate signals passing through the PI3K pathway through the removal of the 5’ 

phosphate of PI(3,4,5)P3 (PIP3).   

  

 Although most of the Ly49 receptors have been shown to function as inhibitory 

receptors there are those Ly49s that function as activating receptors, these include Ly49H 

and Ly49D (47, 80, 81).  The key difference with these receptors with respect to their 

inhibitory family members is that they do not posses the classic ITIM sequence in their 

cytoplasmic domain.  Rather they have a positively charged arginine in the 

transmembrane portion of the cytoplasmic tail.  This positively charged amino acid then 

allows these receptors to associate with an immunoreceptor tyrosine based activation 

motif (ITAM) containing DAP12 molecule (46, 82).  The physiological role of these 

activating Ly49 receptors and their recognition of self-MHC molecules has not been fully 

elucidated.  Ly49D has been implicated in C57Bl/6 mice in the rejection of H2-Dd BM, 

although the precise strength of this interaction is not fully clear (56, 83-86).  It may be 

possible that in normal physiological conditions the activating Ly49s do not recognize 

MHC molecules but rather stress inducible markers, similar to other activating receptors.  

In the case of Ly49H, the ligand is the MCMV encoded m157 glycoprotein (80, 81).  In 

fact mice that do not express the Ly49H receptor, such as BalbC, do not confer an NK 

mediated resistance to MCMV infection (87). 
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CD94/NKG2 

 The other class of receptors within the mouse that recognize class I related 

molecules are the CD94/NKG2 class of receptors (88-90).  Like the Ly49 receptors, 

CD94 and the NKG2A,C, and E molecules are closely linked on chromosome 6 within 

the NKC (88, 89).  Unlike the Ly49s the NKG2 receptors form disulfide linked 

heterodimers with CD94.  Both of these receptors are in the C-type lectin family and 

encode type II transmembrane receptors (89, 91, 92).  These receptors are capable of 

recognizing self ligands through the recognition of MHC class Ib ligands, such as QaIb in 

the mouse (89, 90).  Only the CD94/NKG2A heterodimer functions as an inhibitory 

receptor, where NKG2C and E function in an activating manner (89, 91, 93-95).  Both 

NKG2C and E form heterodimers with CD94 but have a lysine residue in the cytoplasmic 

tail that allows them to associate with the ITAM containing DAP12.  In fact the presence 

of DAP12 is necessary for their stable expression on the cell surface, confirming that 

these two receptors function in an activating manner (96).  These receptors are expressed 

in an ordered manner and on overlapping subsets of cells (97).  This therefore begs the 

question of what is the purpose of both activating and inhibitory receptors recognizing 

the same peptides.  Although no definitive evidence has been found it may be that the 

receptors although extremely closely related have slight variance in the strength in which 

they recognize different peptides allowing different signaling outcomes based on other 

signals present.   
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Non-MHC receptors 

NKG2D 

 NKG2D has been found to be a key activating receptor that is found on all NK 

cells (98-100).  NKG2D is a type-II transmembrane glycoprotein that is expressed as a 

homodimer on the surface of NK cells (99, 101).  Unlike other NKG2 molecules, 

NKG2D does not associate with the CD94 coreceptor (102). Within the mouse NKG2D 

has a short and long isoform that allows it to associate with either DAP10 or DAP12 

respectively (98, 103).  The ability to utilize both of these adapters allows NKG2D to 

signal through different downstream pathways, including PI3K as well as Syk and Zap70 

(102, 104). 

  

 NKG2D recognizes molecules that are structurally related to the MHC but do not 

present peptides (105).   These molecules include the Rae1 family members as well as 

Mult1 and H60 (98, 106-108).  The Rae1 gene family is highly homologous where H60 

and Mult1 have very little sequence homology (107, 109).  This wide variety of ligands is 

able to present danger signals in response to a wide variety of stresses, and thereby, in 

turn allows the NK cell to respond to a wide variety of stresses.  These varied immune 

challenges can include viral infections where early in the immune challenge the presence 

of one of these stress inducible markers can lead not only to NK mediated cytotoxicity, 

but also for an NK cell to cell to up regulate IFN-γ (110).  This is then able to lead to a 

more potent adaptive immune response as well as effecting the regulation of viral 

transcription early in the infection (111).  Raulet et al have shown that in response to 

DNA damage some cells can upregulate NKG2D ligands, thereby providing an NK cell 
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reliant mechanism for the elimination of cells with aberrant DNA replication and possible 

mutations that could lead to transformation (112).  Within tumor immunity similar 

systems exist with stressed cells up regulating NKG2D ligands to allow for both direct 

lysis by the NK cell as well as production of cytokines, both to regulate tumor growth as 

well as to inducing an adaptive response (99, 101, 107, 113-116).  The response of the 

NK cell via NKG2D has proven to be a potent enough response that some tumors have 

ways in which to combat NKG2D mediated cytotoxicity.  These cells are able to produce 

a soluble NKG2D ligand.  This can lead to the down-regulation of NKG2D on the NK 

cell (117).  This ability of NKG2D to elicit a powerful activating signal through both 

DAP10 and DAP12 in response to numerous stimuli makes it one of the most potent and 

important activating NKR.       

  

2B4 

 Although the Ly49’s recognition of MHC is the prototypical system for the 

recognition of host encoded ligands and therefore the recognition of self, there are other 

receptors that recognize non-MHC molecules encoded by the host, one such receptor is 

2B4.  2B4 is a SLAM family related receptor.  Other receptors in this family consist of 

signal lymphocyte activation molecule (SLAM), NK, T- and B-cell antigen (NTB-A), 

CD2-like receptor activating cytotoxic cells (CRACC), Ly-9 and CD84 (118-125).  The 

SLAM related receptors are members of the CD2 Ig superfamily possessing two 

extracellular Ig like domains.  The intracellular portion of these receptors consists of one 

or more immunoreceptor tyrosine based switch motif (ITSM) consisting of the sequence 

TxYxxI/V (126, 127).  Most of the receptors in the SLAM family function through 
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homotypic interactions, although 2B4 does not function in this manner instead it 

recognizes CD48 (128), which is ubiquitously expressed on cells of the hematopoietic 

system (128).  2B4 is expressed ubiquitously on NK cells as well as on subsets of T cells 

and even a small subset of dendritic cells (128, 129).    

 

2B4 has a complex role in NK cell function and physiology that remains an active 

area of investigation.  Depending on the context 2B4 has been shown to act as both an 

inhibitory and activating receptor.  Much of the functional variation of this receptor may 

be due to studying it in both human and mouse models as well as different strains of 

mouse.  (130-138).  A more definitive role for 2B4 in the Bl6 mouse was demonstrated 

through the generation of a 2B4 knock out (KO).  This KO mouse provided strong 

evidence, in the Bl6 model, for 2B4 as an inhibitory receptor (128, 129, 139).  The ability 

of this receptor to function in numerous facets appears to be due at least in part to the 

multitude of signaling molecules 2B4 can recruit.  In both human and mouse models, 

under different signaling contexts, 2B4 has been shown to recruit SAP, EAT-2, FynT, 

SHP1, PI3K and SHIP (133, 139-142).  How the differential recruitment of these 

signaling entities is controlled is not completely understood.  However, which molecules 

are recruited and thus which signal is propagated following CD48 engagement may be 

influenced by the ratio of 2B4 isoforms expressed in the NK cell.  Two 2B4 isoforms 

have been identified in mice, short (2B4S) and long (2B4L), that were proposed to have 

activating and inhibitory signaling capacities, respectively (134).  Although the exact 

function of these two isoforms remains to be defined, it is feasible that the different 

intracellular domains within these isoforms could recruit different effectors of cell 
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signaling.  2B4 presents another interesting phenomenon within the NK field.  Ever since 

the missing self hypothesis and the discovery of the first Ly49s, it has been thought that it 

was through this mechanism alone that the NK cell recognized self and inhibited 

cytotoxicity.  Interestingly, Mcnerney et al have proposed another possibility in which 

2B4 may also play a role in self recognition.  They have performed experiments in which 

they were able to show, through mechanisms non-redundant to the Ly49s, that 2B4 was 

able to recognize self and inhibit BM graft rejection (131).  This does not necessarily 

alter the current system of self recognition by the NK cell; it merely extends the receptors 

that can participate in this process.     

 

Although NKG2D and 2B4 are crucial receptors they are far from the only non-

MHC receptors present on the NK cell.  There are a multitude of others that function in 

both activating and inhibitory capacities.  For instance the natural cytotoxicity receptor 

NKp46 has been shown to play a role in both tumor and viral regulation (143-145).  The 

ligand for this receptor has not been fully identified but is believed to be heparin-sulfate 

proteoglycans (146).  NKp46 like 2B4 has 2 extra-cellular IG domains as well as a short 

cytoplasmic tail containing an arginine that allows it to associate with ITAM containing 

molecules (147).  Given their theorized ability to bind to proteoglycans this receptor may 

prove to be a crucial receptor with an ability to recognize a wide variety of targets.     
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Integration of Signaling 

 A common theme in many immune cells is the manner in which they propagate 

activating signals through the cell.  As has been discussed already, there are a number of 

different activating ligands, some with very disparate structures and functions.  In the NK 

cell and in many other immune cells this disparity is reconciled by the use of adaptor 

molecules that are able to interact with a wide variety of receptors (98).  These adaptors 

consist of the ITAM containing molecule DAP12 or the DAP10 molecule that consists of 

a YxxM motif (102).  These molecules contain a negatively charged amino acid in the 

amino terminus, which allows them to interact with the positively charged amino acid in 

the transmembrane domain of the activating receptors (102).  An important aspect of 

utilizing a small number of adaptor type molecules to transduce signals is that a relatively 

small number of pathways are utilized over and over to transduce these signals.  A 

summary diagram of these signaling pathways is shown in Fig 2.   This figure models the 

balance that exists within the signal motifs utilized by the NK cell.  The activating 

receptors through their pairing with DAP10 and/or DAP12 signal through either PI3K or 

PTKs respectively.  If they utilize the PTK pathway the first line of PTKs tend to be a 

member of the Syk/Zap70 family, which then allows the signal to emanate to a number of 

pathways.  This requirement for the use of PTK or inositol phospholipids for activating 

signals allows the inhibitory receptors, through the ability of their ITIMs to recruit SHP 

and SHIP, to abrogate these signals very efficiently.   
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Figure 2.  Integration of activating and inhibitory NKR signals.  Model diagram 

showing the use of both PTK and PI3K by activating NKR.  SHP is then able to abrogate 

signals emanating through the PTKs and SHIP has a similar function within the PI3K 

pathway.   

 

NK Effector Functions 

Cytotoxicity 

 Two mechanisms, the granule exocytosis method and the death receptor 

pathways, can affect the direct cytolysis of target cells by NK cells.  In the granule 

exocytosis method, when an NK cell is properly activated, it forms a synapse with the 

target cell.  The formation of this synapse then allows the release of the lytic granules in 

the proper orientation to the target cell to induce cell death and/or apoptosis (148-150).  
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These lytic granules include perforin and the granzymes each with a unique role that 

leads to the target cell undergoing apoptosis.  Perforin was originally believed to be 

necessary to produce holes in the target cell to allow the granzymes to enter the target 

cell.  Although this role has been in question with perforin possibly having other roles 

directly resulting in apoptosis.  What is certain is that perforin is necessary for NK cells 

to efficiently lyse target cells (151, 152).  In fact the presence of perforin has been shown 

to play a key role in NK regulation of tumors (153-156).  The role of the granzymes in 

apoptosis is better understood.  In mice there are 10 known granzymes (157).  Granzyme 

B is one of the more studied of the granzymes and has been shown to initiate apoptosis in 

a caspase dependent and independent method.  The granzymes elicit their function 

through cleavage of cellular proteins at specific consensus sequences.  Granzyme B 

functions via cleavage after specific aspartic acid residues (158), one such site is found 

within caspase-3.  Via granzyme B’s cleavage of caspase 3 it is able to activate it and 

thereby the caspase dependent apoptotic cascade (159-161).  Granzyme B is also able to 

cleave aspartic residues sites on members of the Bcl-2 family of proteins especially BID.  

Thereby disrupting the mitochondrial membrane and causing cytochrome C release and 

once again leading to apoptosis of the cell (162, 163).   

  

 The death receptor pathway has also been shown to play a key role in NK 

mediated cytotoxicity (164-167).  NK cells are able to express a number of ligands that 

can induce death receptor pathways including FasL, TNFα and TRAIL (168-171).  

Similar to the granule exocytosis method, upon proper stimulation and synapse formation 

these ligands are brought to the cell surface at the site of the synapse allowing them to 
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interact with death receptors on the target cell.  Interestingly the NK cell is also able to 

augment expression of these death receptors on the target cell to make them more 

susceptible to lysis.  For instance some tumor cells express very little Fas on their 

surface.  NK cells, through the release of IFN-γ, are able to up regulate Fas on the surface 

of these target cells thereby making them susceptible to activation of their death receptor 

pathways (172).   

 

NK in Adaptive immunity 

 NK cells although classified as members of the innate immune system are also 

able to bridge the gap between the innate and adaptive systems.  It does this primarily 

through the release of cytokines.  In fact it was shown many years ago that there is 

diminished CTL activity in mice that lack NK cells (173, 174).  The methods that 

underlie this stimulation are broad and proceed through numerous pathways.  For 

instance in response to a viral challenge NK cells, through the secretion of IFN-γ and 

possibly other cytokines, can induce macrophages to stimulate T cells to differentiate into 

Th1 and CD8+ cytotoxic cells (175).  NK cells have also been shown to release IFN-γ 

and chemokines such as MIP-1 and RANTES that are able to function as 

chemoattractants and activating molecules at sites of interaction (176, 177).  

 

 An interesting aspect of NK cells at the interface of the innate and adaptive 

immune system is the relationship they can have with dendritic cells (DC).  This 

interaction can occur in both directions with the DC activating the NK cell or the NK cell 

aiding in the activation and/or maturation of the DC and can even go as far as NK cells 
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killing the immature DC.  One of the more common methods through which DC are able 

to activate NK cells is through the use of cytokines.  For instance IL-12 from DC has 

been shown to increase IFN-γ production by NK cells (178-181).  At sites of 

inflammation DC are able to release IL-18 which is then able to effect the migratory 

capability of the NK cell (182).  IL-18 and 12 are also able to interact synergistically to 

increase NK cytotoxicity (183).  Different forms of DC are even able to, through direct 

cell to cell contact, release classic activators of NK cells such IL-2, IL-12 and IL-15 to 

directly augment the NK cell’s activation status (184-189). 

  

 The effect NK cells have on the DC seems to rely not only on the cytokines and 

ligands present but also on the ratio of NK:DC.  If the ratio is low (1:5), and the proper 

cytokines are present, such as IFN-γ and TNFα, the NK cell can stimulate iDC to mature 

(190).  In this method cell to cell contact allows for triggering of the iDC to mature 

through the NKp30 receptor and possibly through the TREM2 receptor (181, 191).  The 

other situation exists when the ratio is switched and there are more iDC to NK (5:1).  In 

this situation the NK cell is able to lyse the iDCs, due mostly to their low expression 

levels of MHC.  Once again NKp30 is a key receptor in this NK DC interaction (190, 

192, 193).  These highly varying functions seem to be at odds but both functions have 

key regulatory roles in aiding in the balance of activation and tolerance in the iDC.   

  

NK Development 

 The process in which an NK cell progresses from HSC to a fully functional 

mature cell is far from being fully understood.  At this stage the process is understood as 
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a linear progression that is divided into distinct steps based on the presence of distinct 

surface markers, location, and eventually the acquisition of function.  The first stages of 

NK cell development involve not the commitment to becoming and NK cell alone, but 

rather the differentiation of the HSC into the common lymphoid progenitor (194).  

Although these cells have been shown to have NK potential in vivo and in vitro the 

designation common lymphoid progenitor means that these cells can also form B and T 

cells (195-197).  The next step that has been identified is the commitment to a T NK 

restricted progenitor (TNKP).  An interesting aspect of this cell is that it has only been 

identified in the fetal liver and thymus of the mouse (198, 199) and not in the adult 

animal.  The identification of this cell is based on a lineage- (Lin), NK1.1+, and c-kit+ 

phenotype (200).  This phenotype, like its location, is very intriguing given that the 

presence of NK1.1 appears at this stage, and as will be discussed in the next stages of 

development is not expressed again until more differentiated stages of the NK cell.  So 

although this cell has been shown to form NK cells in vivo and in vitro it may be possible 

that this is an intermediary with a yet to be fully elucidated role.   

  

 The generation of the NK progenitor (NKP) represents the first major step to 

creating a cell that is restricted to the NK lineage rather than remaining bipotent. The 

linear process from NKP to mature NK can be divided into 5 distinct steps that once 

again are punctuated by the acquisition of distinct surface markers (201-203).  These 

stages of NK development occur in the bone marrow as the first steps require the 

interaction of the NKP with the BM stroma.  The phenotype of the NKP is described as 

Lin-, CD122+, NK1.1-, DX5- (203).  One of the earliest hallmarks of NK cell 
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development, and the step which is believed to mark the transition of T/NKP to NKP, is 

the acquisition of CD122, or the IL2/15Rβ (201, 203).  The acquisition of CD122 is a 

crucial step in the commitment to the NK lineage such that IL-15R deficiency (204) as 

well as IL-2Rβ deficiency (205) produces defects in NK cell development and function.  

It has also been shown that defects in IL-15 signaling pathways, such as JAK3 and 

STAT5a/b can cause defects in NK cell development (206).  Stages 2 to 5 of 

development from NKP to mature NK are marked, sequentially, first by the gain of Mac1 

expression then the CD94/NKG2 receptor complex followed by the Ly49 receptors.  It is 

in the final stage of development within the BM that the NK cell gains functionality, 

specifically cytotoxicity and IFN-γ production thereby resulting in a fully mature NK cell 

(202, 203).  

 

SHIP 

The cloning of SHIP 

 SHIP1 had a bloom of interest in 1996 with numerous groups independently 

cloning it (207-211).  Since it’s identification SHIP has been shown to hydrolyze the 

5’phosphate of phosphatidylinositol-3,4,5-phosphate (PIP3) in vivo and inositol-1,3,4,5–

tetrakisphosphate (IP4) in vitro,(208, 210)  The ability of SHIP to hydrolyze the 5’ 

phosphate of PIP3, allows it to oppose the activity of PI3K, thereby effecting a wide 

variety of cellular activities including proliferation, differentiation, apoptosis and 

migration.   
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Figure 3.  SHIP.  A structural diagram of SHIP showing the functional domains.   

 

SHIP Functional Domains 

 The structure of SHIP consists of an amino terminal SH2 domain, a 5’ inositol 

phosphatase, carboxy terminal NpXY motifs as well as a polyproline rich motif (Fig. 3).  

The amino terminal SH2 domain of SHIP has been shown to bind to phospho-tyrosines 

present in many signaling molecules (212-214).  It may be through this domain that SHIP 

plays its most important role in regards to signaling within the NK cell.  The major 

inhibitory receptors within the NK cell posses an ITIM which has been shown to posses 

phospho-tyrosines that are able to associate with the SH2 domain of SHIP (212, 215, 

216).  SHIP has also been shown to bind to the intracellular tail of 2B4 and KLRG1 (217) 

as well as the FcγRIIB where it plays a critical role in receptor localization to the lipid 

raft (215, 218, 219).  Interestingly SHIP’s SH2 domain has also been shown to interact 

with another phosphatase, SHP2, a molecule that plays an essential role in the inhibitory 

signaling pathway of NK cells (220, 221).  

 

 The catalytic domain of SHIP is its 5’ inositol phosphatase.  This enzymatic 

domain is able to hydrolyze the 5’ phosphate from PIP3 and IP4 (208, 222, 223).  PI3K 

catalyzes the addition of a phosphate at the 3’ position on Phosphatidyl Inositol(4,5) 

Phosphate (PI(4,5)P2), creating PIP3.  PIP3 plays a key role in recruiting pleckstrin 
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homology (PH) domain containing proteins such as AKT (224-228).  It is through the 

removal of the 5’ phosphate from this phosphorylated PIP3 that SHIP can regulate 

pathways that function downstream of PI3K (224-228).  

   

 A number of NpXY motifs exist in the amino terminus of SHIP. The NpXY motif 

can become tyrosine phosphorylated upon activation, this phospho-tyrosine then becomes 

a possible binding site for phospho-tyrosine binding (PTB) domain containing proteins 

including SHC, DOK1, and DOK2 (222, 229-233).  These NpXY motifs have also been 

shown to bind to the p85 subunit of PI3K (234-236).  Interestingly, although SHIP can be 

phosphorylated the function of the 5’ inositol phosphatase does not seem to be reliant 

upon this phosphorylation, indicating that the recruitment that occurs through SHIP’s 

other domains, to the site of interaction may play a more critical role than the 

phosphorylation itself (237).  Within the C terminus there is a polyproline rich motif that 

allows for the binding of proteins that contain an SH3 domain (238). 

  

 Other possible roles of SHIP in signaling have recently been uncovered.  

Valderrama-Carvajal et al were able to show increasing evidence that SHIP does 

hydrolyze IP4 in vivo (223).  This process could effect the formulation of higher number 

inositol phosphates and therefore may hinder protein synthesis (239).  It is also possible 

that PI-3,4-P2 may also act as a second messenger in cells leading to the activation of 

PKB and AP1(240-242). 
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Figure 4.  SHIP’s role within PI signaling.  A diagram showing the proteins involved in 

the progression from PI to PI(3,4,5)P3 as well as the possible intermediaries.  Many of 

these different PIs have possible effect on varying signaling pathways.  Some of these 

possible pathways are shown immediately above and below the individual forms.  IP4 

and other IPs can be formed from the hydrolysis of the IP from the diacylglycerol 

molecule by a phospholipase.   

 

SHIP isoforms 

 SHIP2 was initially known as inositol polyphosphate-like-protein1 (INPPL-1) 

(243).  In 1997 it was identified as a 150-155kDa protein with 38% amino acid sequence 

homology to SHIP1 and therefore termed SHIP2 (244).  The majority of the 38% 
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sequence homology exists within the phosphatase domain as well as the other signaling 

domains so even though the sequence homology is not high the functional homology is 

(238, 244).  Although these two molecules share similar domains, they seem to function 

in non-overlapping manners each segregating to different signaling systems, with SHIP2 

having a more ubiquitous expression pattern in cells other than those of the hematopoietic 

system (244-246).  Another SHIP isoform was identified in humans (210) and in mice 

(247) that was found to lack the SH2 domain.  This isoform is formed via a promoter that 

exists within intron 5/6 (248).  This isoform has been shown to be expressed in murine 

embryonic stem cells and HSC but not more differentiated progeny and has thus been 

termed s-SHIP(247, 248). 

 

SHIP KO Mice 

 Different variations of the SHIP knockout (KO) mouse have been constructed 

deleting different portions of the protein.  In the studies detailed in this dissertation the 

SHIP KO mouse created in our lab was utilized (247).  This mouse was constructed by 

deleting the promoter and part of the first exon of SHIP.  This results in no SHIP protein 

being present in the mouse (216, 249, 250).  SHIP is expressed very early in the 

developmental stages of the embryo, specifically 7.5 DPC, though the SHIP null mouse is 

still viable (216, 249-251)  Although the mice are viable they do harbor numerous 

physiological conditions, especially within the hematopoietic compartment.  Peripheral 

CD8 T cell numbers are significantly reduced while CD4 numbers are unaffected (249).  

Mast cell degranulation is hyper-responsive (252).  One of the more severe conditions is 

a myeloproliferative disorder leading to increased myeloid progenitors in the marrow and 
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monocyte/macrophages in the periphery (249, 253).  This dramatic increase in myeloid 

cells leads to an infiltration of alveolar macrophages and results in consolidation of the 

lungs, which is believed to be what causes the mouse’s death at 8 to 12 weeks of age 

(249).  In line with this proliferation of myeloid cells there is a significant increase of 

myeloid suppressor cells. This increase of myeloid suppressor cells is able to effect a 

decrease in graft versus host disease (254, 255).  

 

SHIP in NK Cells 

 Numerous studies have indicated a role for SHIP in NK cells.  The first of these 

concerned not NK cells themselves but rather the ITIM domain contained within FcR 

found on B cells.  Although these initial studies did not identify a role for SHIP they 

merely identified it presence at the receptor (256).  The need for SHIP on some receptors 

to function was later shown when studying the role of Shc in NK cell mediated 

cytotoxicity.  In this study it was shown that Shc, when bound to Ly49, is able to recruit 

SHIP.  When Shc was mutated so that it was unable to be recruited to the NKR SHIP was 

also no longer recruited.  This lack of SHIP resulted in a loss of function for this receptor 

(257).  Our lab has published a study identifying a more crucial role for SHIP in the NK 

cell.  In this study it was shown that in the SHIP KO mouse the NKR repertoire was 

skewed with Ly49A and C/I being over represented.  This then lead to a much greater 

phenomenon in which the SHIP-/- mouse was unable to reject bone marrow from an MHC 

mismatched mouse.  This was attributed to the overrepresentation of these Ly49s (216).  

Other studies have also extended our understanding of SHIP in the NK cell by identifying 

a number of other receptors that recruit SHIP when activated including Ly49B, KLRG1 
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and 2B4 (217).  Other possible roles for SHIP have also been hypothesized in human NK 

cells.  The association of SHIP with CD16 has been shown to be necessary for proper 

recruitment of the receptor to lipid rafts and therefore CD16 mediated cytotoxicity (219).  

In addition it has been shown that a subset of human NK cells have elevated levels of 

SHIP and lowered perforin levels.   This subset of cells has additionally been shown to 

become functionally annergic in chronic HIV infections (258).  Although the specific role 

of SHIP in many of these studies has not been identified it has shown that SHIP plays a 

key role with numerous NKR as well as roles of the NK cell.  This study will attempt to 

build off of these studies and delve deeper into the specific molecular role SHIP plays in 

the NK cell.       
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CHAPTER 2 

Dominance by an MHC-Independent Inhibitory Receptor Compromises NK Killing of 

Complex Targets 

 

Introduction 

NK cells distinguish normal cells from those altered by infection, stress or 

transformation via inhibitory receptors that detect self ligands and activating receptors 

that recognize MHC-like ligands expressed by tumor cells, virally-infected cells or cells 

with DNA damage (112, 259-261). Unlike their B and T cell counterparts, NK cells 

generate repertoire diversity through variegated and overlapping expression of inhibitory 

and activating receptors.  Recognition of self by NK cells is layered and involves the 

recognition of MHC class I molecules (50) or non-MHC ligands like CD48 and Ocil/Clr-

b via the non-classical receptors 2B4 and NKR-P1D, respectively (62, 131, 262). This 

pattern of receptor distribution creates an NK compartment composed of different cell 

subsets each possessing varying degrees of responsiveness to self, non-self and altered-

self. In this manner the NK compartment generates a sufficient number of cell subsets 

capable of responding to infected, tumor or allogeneic cells, while retaining tolerance to 

normal host cells.   
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2B4 is a member of the SLAM related receptors that include signal lymphocyte 

activation molecule (SLAM), CD2 like receptor-activating cytotoxic cell (CRACC), NK-

T-B Ag (NTB-A) and CD48 (263).  Many of these receptors function through 

interactions with other family members including 2B4, which interacts with CD48.  2B4 

is expressed ubiquitously on NK cells as well as other cells in the hematopoietic system 

(135).  Studies originally indicated an activating role for 2B4, although most of these 

studies were performed in vitro utilizing antibody ligation experiments (132, 133, 264).  

A more definitive role for 2B4 was recently demonstrated through the generation of a 

2B4 mutant mouse, in which an inhibitory role was identified (139). A potential dual role 

for 2B4 in NK function could be explained by its ability to recruit different adaptor 

proteins, including SAP as well as EAT-2 (139-142).   Although the signaling pathways 

that control responses following 2B4 ligand engagement have yet to be defined in their 

entirety, several participating signaling components have been defined including, SAP, 

EAT-2, FynT, SHP1, PI3K and SHIP (133, 139-142). 

 

We have previously shown that SHIP is critical for maintenance of NKR 

repertoire diversity in the peripheral NK compartment (216).  We have further defined 

the role of SHIP in the NKR repertoire by placing the SHIP mutation on a defined genetic 

background (C57BL6/J).  The peripheral NK compartment of these SHIP-/- mice 

(C57BL6/J) is disrupted with a profound under representation of inhibitory NKR specific 

for MHC class I.  Only two NKR, 2B4 and NKR-P1D, are found to be over expressed or 

overrepresented in NK cells of SHIP-/- mice. Intriguingly, both of these receptors are 

specific for MHC-independent ligands. In this study we demonstrate that SHIP-
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deficiency causes deregulation of 2B4 surface expression and signaling such that 

cytolysis of complex targets is compromised. 

 

RESULTS 

SHIP-/- NK Repertoire 

 We have previously shown that in the SHIP deficient NK cell there is a receptor 

bias towards MHC specific inhibitory receptors, specifically Ly49 A and C/I.  These 

initial studies were performed in a C57BL/6/129 mixed background.  Since these initial 

studies we have crossed the SHIP-/- mouse to a fully defined Bl6 background.  With these 

mice we have reanalyzed the NKR repertoire and found a profound and significant down 

regulation of all NKR except 2B4 and NKR-P1D (Fig. 5).   
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Figure 5.  NKR repertoire.  A) Representative histograms for the different NKR 

analyzed after gating on NK1.1+ Lin- splenocytes of 6-8 week old SHIP-/- mice and their 

WT littermates (Lin panel:  IgM, CD3, TcR-b, Gr1, CD11c).  Red histograms are for 

SHIP-/- NK cells while black histograms are for WT littermate controls.  In order to 

estimate the percentage of NKR+ cells in the NK compartment, positive NKR gates were 

set at ≥95% of NK1.1+Lin- cells staining positive for an isotype control stain performed 

on an equal mixture of null and WT splenocytes.  B) Representation of individual NKR 

in splenic SHIP-/- NK cells after normalization to WT.  The % of normal = (%NKR+ 

SHIP-/-/%NKR+ SHIP+/+)x100 for each indicated NKR.  For 2B4, % normal was 

calculated in the same manner except that MFI was used rather %NKR+.  Blue, red and 

black bar graphs represent % normal values that are significantly lower, higher, and 

unchanged in the SHIP-/- NK compartment as compared to WT, respectively. 

 

2B4 Expression Levels 

 In order to determine the effect of SHIP deficiency on 2B4 expression, we 

examined various stages of NK cell maturation and activation (Fig. 6).  Our initial 

analysis included both mature splenic NK cells as well as immature bone marrow NK 

cells.  Analysis of NK cells at these stages of maturation showed that 2B4 is over 

expressed on the surface of SHIP-/- NK cells as compared to NK cells from WT 

littermates (Fig. 6A,B).  We further examined 2B4 status utilizing activated NK cells.  

For these experiments we analyzed both in vivo polyinosinic acid (poly(I:C)) activated 

NK cells and in vitro activated NK cells cultured for 7 days in the presence of IL-2.  
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Consistent with our analysis of freshly isolated NK cells, in vivo (Fig. 6C) and in vitro 

(Fig. 6D) activated SHIP-/- NK cells also exhibit increased surface density of 2B4 as 

compared to WT controls.  Thus, SHIP is required to maintain normal expression of 2B4 

on the cell surface, indicating SHIP not only regulates expression of NKR for MHC 

ligands, but also NKR for MHC-independent ligands.  Moreover, SHIP performs this role 

at multiple stages of NK development and differentiation.  In addition to these cell types 

we created SHIP-/- and WT chimeric mice in order to determine if the up regulation of 

2B4 in the SHIP-/- NK cell was due to cell extrinsic effects (Fig. 6E).  As before we see 

that 2B4 surface density remains elevated in the SHIP-/- mice. 

 

 

 

Figure 6.  2B4 status is altered in SHIP-/- NK cells.  Representative overlays of 2B4 

histograms after back gating on NK1.1+ Lin- cells.  Bar graphs represent mean 

fluorescence intensity of at least three separate animals.  (*p< 0.05, n=3, Students two 

tailed T-test)  SHIP-/- (Red) WT (Blue) A) Immature BM NK cells B) Mature splenic NK 

cells C) In vivo poly-IC stimulated NK cells D) In vitro IL-2 stimulated LAK cells.  E) 

NK cells from a SHIP-/- WT chimera. 
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NKG2D mediated cytolysis is compromised in SHIP-/- mice 

2B4 has recently been shown to function as an important inhibitory receptor in 

vivo (131).  Thus, we speculated that the increased surface density of this inhibitory 

receptor might skew the balance of inhibitory and activating signals received by SHIP-/- 

NK cells and thereby alter key cytolytic functions.  To examine the impact of 2B4 

overexpression on SHIP-/- NK function, we examined NK cytolysis of tumor cells 

mediated by the activating receptor NKG2D.  To examine whether cytolysis of tumor 

targets that express the NKG2D ligand Rae1 are compromised in the SHIP-/- NK 

compartment we magnetically enriched splenic NK cells and cultured them for 7 days in 

the presence of IL-2 to generate lymphokine-activated killer (LAK) cells.  Intriguingly, 

we find that NK cell recovery in SHIP-/- LAK cultures is significantly better than that of 

WT cultures prepared in a similar manner (p<0.05), suggesting that SHIP-deficiency may 

enhance cytokine-stimulated NK cell survival and/or proliferation ex vivo (Fig. 7A).  

Flow cytometric analysis of these 7-day LAKs revealed that surface expression of 

NKG2D on activated NK cells from SHIP-/- mice is comparable to that of WT controls 

prepared in an identical manner (Fig. 7B). The surface density of 2B4 remained elevated 

in SHIP-/- NK cells as shown above (Fig. 6D).  The cytolytic activity of the activated NK 

cells was then determined in a standard 4-hour chromium release assay against RMA 

cells expressing the NKG2D ligand Rae1.  Despite equal surface expression of NKG2D 

on SHIP-/- and WT LAK cells, we find that cytolysis of RMA Rae1-transfectants by 

SHIP-/- NK cells is profoundly compromised relative to WT NK cells at all E:T ratios 

tested (Fig. 7C).  In fact, only at the highest E:T ratio, 60:1, was cytolysis of Rae1+ RMA 
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cells by SHIP-/- LAK cells significantly higher than background cytolysis observed for 

parental RMA cells.  No significant killing of parental RMA cells, that lack the Rae1 

antigen, was seen for either SHIP-/- or WT NK cells confirming the specificity of this 

assay for the NKG2D ligand Rae1.  The fact that NKG2D expression levels are 

comparable in SHIP-/- and WT LAK cells while NKG2D-mediated cytolysis is 

profoundly compromised in SHIP-/- NK cells, suggests that hyporesponsiveness in SHIP-/- 

NK cells could be due to increased expression and/or inhibitory signals from 2B4 

engaging its ligand, CD48, which is expressed on the surface of both RMA and Rae1+ 

RMA cells (Fig 7E).  

 

Restoration of NKG2D mediated cytolysis  

 To examine whether altered 2B4 signaling was causing this hyporesponsiveness, 

we tested whether antagonizing the 2B4-CD48 interaction restores NKG2D-mediated 

killing.  Incubation of targets with an anti-CD48 antibody was able to restore SHIP-/- 

LAK killing to WT levels (Fig. 7D).  In three independent standard 4-hour chromium 

release assays where we tested killing of Rae1+ RMA transfectants in the presence or 

absence of anti-CD48, we have repeatedly observed a statistically significant 

enhancement of SHIP-/- killing.  Although some increase in WT killing due to CD48 

blocking occurred, it was dramatically less than that observed with CD48 blockade in 

SHIP-/- LAK cytolysis assays.  In fact, in all but one E:T ratio, 20:1, the killing by SHIP-/- 

LAK cells was not significantly different than that of killing by WT LAK performed in 

the presence of CD48 blockade.  The ability to restore SHIP-/- LAK cytotoxicity against 
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Rae1+ RMA targets by blocking the 2B4-CD48 interaction suggests that 2B4 has a 

dominant inhibitory role in the SHIP-/- NK compartment. 

 

 

 

Figure 7.  Compromised NKG2D-mediated cytolysis of Rae1+ tumor targets by 

SHIP-/- NK cells and restoration by CD48 blockade.  A) Magnetically purified NK 

cells were plated at 2,000,000cells/mL in the presence of IL-2 for 7 days.  Cells were 

harvested at day 7 and the resulting percentage of cells recovered from four separate 

experiments are shown.  (*p<0.05, N=4, Students two tailed T-test)  B) NKG2D status of 

NK1.1+ CD3- 7 day LAK cells.  Representative histograms showing the NKG2D status of 

SHIP-/- (blue) and WT (green) LAK cells are shown.  Red histogram indicates isotype 

control.  C) Standard 4hr chromium release assays were performed with SHIP-/- and WT 

LAK cells.  RMA cells with and without Rae1 transfectants were used as targets.  Percent 

lysis is indicated on the left axis and the E:T ratios across the bottom axis.  *p<0.05 for 

cytolysis of Rae1+ RMA cells by WT LAK cells compared to SHIP-/- LAK cells.  

+p<0.05 for cytolysis of RMA cells compared to Rae1+ RMA cells by SHIP-/- LAK cells.     
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D) Cytolysis of Rae1+ RMA cells with and without blocking of CD48 on target cells in a 

standard 4hr chromium release assay.  *p<0.05 for cytolysis of blocked Rae1+ RMA cells 

by SHIP-/- LAK cells compared to WT LAK cells.  +p<0.05 for the cytolysis of blocked 

Rae1+ RMA cells versus unblocked Rae1+ RMA cells by SHIP-/- LAK cells.  All 

cytotoxicity experiments were done in triplicate and are representative of three or more 

experiments.  E) CD48 status of RMA and Rae1+ RMA cells.   

 

Compromised BM rejection 

 Previously we found that the NK repertoire disruption observed in SHIP-/- mice 

on a mixed 129Sv/BL6 background led to an inability to reject H-2d and H-2s BM grafts 

that are completely MHC mismatched. We attributed engraftment in 129/BL6 SHIP-/- 

mice to over representation of Ly49A and C (216).  However, Ly49A and Ly49C are not 

over represented in SHIP-/- mice on a C57BL/6 background suggesting that rejection of 

allogeneic BM grafts might not be compromised in SHIP-/- mice on this defined 

background.  Although these SHIP-/- (BL6) mice might remain permissive for 

engraftment of MHC-mismatched BM grafts owing to the compromised NKG2D 

mediated cytolysis we observed above.  This appears to be the case, as SHIP-/- mice on a 

C57BL/6 background are still permissive for engraftment of BM from several different 

donors with full MHC mismatches (Fig. 8).  Initially, we transplanted SHIP-/- (BL6) hosts 

with H-2d BALB/C BM and measured acute engraftment by the splenic IUdR assay used 

previously (216). As was observed in 129/BL6 SHIP-/- mice (216), we find that BALB/C 

H-2d BM engrafts the SHIP-/- (BL6) cohort, but is rejected by their WT littermates.  

Subsequently we tested engraftment of BM from a variety of other donors with full MHC 
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class I mismatches (H-2p, H-2r, H-2f and H-2u) not analyzed previously, and found that 

SHIP-/- (BL6) mice are also permissive for engraftment by BM from these donors (Fig. 

8).  

 

 

 

Figure 8.  Allogeneic BM rejection assay. Splenic IUdR uptake in F9/10xC57BL/6 

SHIP-/- and WT recipients transplanted with H-2d donor BM cells, F6xC57BL/6 SHIP-/- 

and WT recipients transplanted with H-2f, H-2p, H-2u or H-2r donor BM cells. Red bar 

graphs represent SHIP-/- recipients transplanted with allogeneic donor BM while blue bar 

graphs represent WT recipients transplanted with allogeneic donor BMC. Black bar 

graphs represent BL6 recipients transplanted with syngeneic BL6 donor BMC. (*p<0.05)  
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Compromised cytolysis of Ly49H targets 

The ligand for Ly49H has been identified as the CMV-encoded membrane protein 

m157 (80, 81).  Since SHIP-/- NK cell killing of targets that express ligands for NKG2D 

is compromised, we postulated that killing of  m157+ targets might be similarly disabled.  

To test this, we examined the ability of LAK cells from SHIP-/- and WT mice to kill 

BaF3-m157+ transfectants (Fig. 9).  As with NKG2D, we find that ex vivo activation of 

SHIP-/- NK cells with IL-2 restores Ly49H to a surface density essentially identical to 

that in WT controls (Fig. 9A).  Standard 4-hour chromium release assays were then 

performed at E:T ratios of 60, 20 and 6:1.  The SHIP-/- LAK cultures showed severely 

diminished cytolysis of m157+ targets at all E:T ratios tested (Fig. 9B).  Killing in this 

assay was confirmed as being specific for the m157 antigen as no cytolysis of BaF3 

parental cells was observed (Fig. 9B).     

 

Restoration of Ly49H mediated cytolysis 

Given that 2B4 signaling compromises NKG2D mediated killing by SHIP-/- NK 

cells, we also examined whether this might be the case for the killing of viral ligand 

positive targets mediated by Ly49H.  As was done for NKG2D, we measured NK 

cytolysis using a standard 4-hour chromium release assay in the presence and absence of 

anti-CD48.  In three separate experiments, incubation of the m157+ BaF targets with anti-

CD48 prior to killing significantly restored SHIP-/- LAK killing (Fig. 9C).  The 

significant enhancement of WT killing by blocking of CD48 was also seen at the 20:1 
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E:T ratio, but is lower than that observed for all m157+ cytolysis assays performed with 

SHIP-/- NK cells (Fig. 9C).  Thus, as with killing of tumor targets, killing of targets that 

express a viral ligand for an NK activating receptor is also compromised by 2B4 

inhibitory signaling, further demonstrating 2B4 is a dominant inhibitory receptor in the 

SHIP-/- NK compartment.  

 

 

Figure 9.  Compromised Ly49H-mediated cytolysis of CMV m157+ viral targets by 

SHIP-/- NK cells and restoration by CD48 blockade.  A) LAK cells were incubated 

with anti-NK1.1, CD3, and Ly49H.  Histograms are representative of the status of Ly49H 

in WT (green) and SHIP-/- (blue) LAK cells as compared to the isotype control (red).  B) 

Cytolysis of BaF3 parental cells and BaF3 transfectants expressing the CMV m157 

ligand by IL-2 activated LAK cultures from SHIP-/- mice or WT littermates in a standard 

4hr chromium release assay.  Percent lysis is on the left axis and E:T ratios across the 

bottom axis. *p<0.05 for cytolysis of m157+ BaF target cells by WT LAK compared to 

SHIP-/- LAK.  +p<0.05 for cytolysis of m157+ BaF cells compared to BaF cells alone by 

SHIP-/- LAK.  C) Cytolysis of m157+ BaF cells with and without blocking of CD48 on 
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target cells in a standard 4hr chromium release assay.  +p<0.05 For cytolysis of blocked 

versus unblocked m157+ BaF cells by SHIP-/- LAK cells.  *p<0.05 For cytolysis of 

blocked m157+ BaF cells by WT LAK cells compared to SHIP-/- LAK cells.  All 

cytotoxicity experiments were done in triplicate and are representative of two or more 

experiments.       

 

NKR-P1D mediated inhibition 

 Our restoration of cytotoxicity with a CD48 blockade provides strong evidence 

that 2B4 is the dominant inhibitory receptor.  Although given that NKR-P1D was also 

over expressed on SHIP-/- NK cells we performed Clr-b antibody blocking experiments to 

determine if this could restore SHIP-/- NK cytotoxicity.  In these experiments we see no 

improvement with Clr-b blockade alone as well as no improvement when 2B4 and Clr-b 

were blocked together (Fig. 10).     

 

 

Figure 10.  NKR-P1D Clr-b blockade.  Cytolysis of RMA or RMA Rae1+ cell by SHIP-

/- LAK cells at a ratio of 20:1.  Cytolysis was performed either with LAK cells alone, in 
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the presence of CD48 blockade, Clr-b blockade, or CD48 and Clr-b blockade performed 

in combination.   

 

DISCUSSION 

In this study we have shown that SHIP-/- NK cells exhibit overexpression of 2B4 

throughout all stages of NK maturation and activation.  We have also shown that 2B4 

inhibitory signaling in SHIP-/- NK cells represses killing of complex targets where 

effective recognition and killing requires integration of both activating and inhibitory 

signals.  Our functional studies indicate increased 2B4 inhibitory signaling disrupts this 

balance such that key activating receptors like NKG2D and Ly49H are unable to 

effectively promote cytolysis.  Although the molecular mechanisms responsible for this 

imbalance remain to be defined, we propose two hypotheses to explain this altered 

function.   

 

 In our first hypothesis we propose that the quantitative difference in 2B4 

expression between SHIP-/- and WT NK cells leads to an increase in the basal level of 

2B4 inhibitory signals received by an NK cell and thus alters the balance of activating 

and inhibitory signals forcing the cell towards hyporesponsiveness (Fig. 11B).  An NK 

cell receives a variety of activating and inhibitory inputs from external targets.  A balance 

of these inhibitory and activating signals must be achieved in order for the cell to 

maintain tolerance to self.   In order for an NK cell to carry out cytolysis the activating 

receptors must be integrated to overcome inhibitory signals.  Thus, increased basal 

inhibitory signals from ubiquitous 2B4-CD48 interactions could compromise the ability 
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of a SHIP-/- NK cell to respond efficiently to activating signals from either NKG2D or 

Ly49H.  In that case, the role of SHIP is to limit the surface expression of 2B4 to a level 

that does not interfere with normal activating receptors effecting NK cytolytic function. 

Alternatively, we propose that there could also be a qualitative change in the 2B4 

inhibitory signaling in SHIP-/- NK cells such that each 2B4 receptor delivers a more 

potent negative signal (Fig. 11C).  Although the precise molecular mechanisms of 2B4 

signaling have not been fully elucidated, key components in this signaling pathway have 

been identified.  Of relevance to this study is that SHIP has been shown to be recruited to 

2B4, suggesting it can influence 2B4 signaling (140, 141, 265).  SHIP may in fact be 

recruited to 2B4 to oppose the actions of PI3K. Consistent with this PI3K is also recruited 

to 2B4 where it can trigger the activation of downstream effectors including AKT and 

PLCγ (140, 266).  This PI3K pathway may play a role downstream of EAT-2, which has 

been shown to be a key adaptor protein for signals emanating from 2B4 (139).  Thus, a 

lack of SHIP may lead to unopposed PI3K signaling at 2B4 and thus a qualitative 

difference in 2B4 signaling (Fig. 11C).  We postulate that in the absence of SHIP, PI3K 

signaling may run unchecked in NK cells and that this may not only increase the 

inhibitory signal emanating from individual 2B4 receptors, but also increase transcription 

of 2B4 and possibly other downstream inhibitory signaling components like EAT-2.  
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Figure 11.  Dominance by 2B4 compromises NK cytolysis of complex targets.  A) 

SHIP-competent cell with normal levels of 2B4 and a proper balance of inhibitory signals 

from 2B4, and activators, like NKG2D or Ly49H, is maintained until activation 

overcomes inhibition.  B) Increased 2B4 surface density in the SHIP-/- cell increases basal 

levels of 2B4 inhibitory signaling and this overrides activating receptors.  C) 2B4 

inhibitory signals in the SHIP-deficient cell are qualitatively altered in a way that leads to 

the activating signals being overridden.  D) Model for how unopposed 2B4 signals in the 

SHIP-deficient cell might “feed-forward” to: (i) increase its expression and thus basal 

levels of inhibitory signaling as in (B) or (ii) increase expression of a negative signaling 
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component (e.g., EAT-2) utilized by 2B4 to effect both a qualitative and quantitative 

change in 2B4 inhibitory signaling. 

 

It is also quite probable that the above potential mechanisms could act in concert 

to disrupt the function of the SHIP-deficient NK cell. That is, a qualitative change caused 

by a lack of SHIP signaling at 2B4 may initiate a quantitative change by deregulating 

2B4 surface expression. The initial qualitative change could also effect changes in 

expression other signaling molecules that participate in 2B4 signaling and thus further 

altering inhibitory signals emanating from 2B4 (Fig. 11D).  In this manner the SHIP-/- 

NK cell becomes locked into a ‘feed-forward’ 2B4 inhibitory signaling mode rendering 

the cell hyporesponsive in the presence of its ligand CD48.  Our findings extend SHIP’s 

regulation of the NK receptor repertoire to MHC independent inhibitory receptors, but 

also demonstrate how this seemingly minor component of NKR regulation is absolutely 

critical to the normal cytolytic function by the NK compartment.      

 

 

MATERIALS AND METHODS 

Animals 

The SHIP-/- mice used in this study were previously created in our lab (See Chp. 

1).  Mice were maintained by intercrossing SHIP+/- mice (F10 to the C57BL6/J 

background) thereby allowing for sufficient numbers of both SHIP-/- as well as WT 

littermates for all experiments.  All experiments were performed with SHIP-/- and WT 

littermates between 6-9 weeks of age.  
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Acute bone marrow engraftment assays 

 Bone marrow engraftment was assayed through the use of the splenic IUdR 

uptake assay.  For these experiments whole BM was isolated from mice of the noted 

MHC haplotype (ie. H2D).  SHIP+/+, SHIP-/- and syngeneic BL6 hosts were lethally 

irradiated with 950 Rads with a gamma irradiator (Perkin Elmer).  Irradiation was given 

in two doses with 2 or more hours of rest in between doses.  Post-irradiation the host 

mice received 5x106 whole BM (WBM) cells in a total volume of 200µL, from allogeneic 

or syngeneic donors as indicated in the results, via an intra-venous injection.  Four days 

post-BMT 3mCi of 125I-dUrd was injected intravenously to allow for the measurement of 

engraftment of the BMT.  On the fifth day post-BMT, spleens of the host animals were 

removed.  Engraftment was then assessed through the measurement of 125I uptake in the 

whole spleen with a gamma counter (Perkin Elmer Wizard1470). 

 

Antibody staining and flow cytometry 

 For all flow cytometry experiments whole splenocytes, WBM or LAK cultures 

were harvested and prepared into a single cell suspension.  Whole splenocytes and WBM 

were red blood cell lysed for 5 minutes at room temperature in RBC lysis buffer 

consisting of 0.15µM NH4Cl, 10mM KHCO3, and 0.1mM EDTA.  Cells were spun down 

at 300xG for 5 minutes and then resuspended at 1x106cells/50µL in staining media.  

Staining media consists of PBS with 3% FBS and HEPES. Cells were then Fc blocked for 

15 minutes on ice with anti-CD16/32 antibody.  The cells were then stained with the 

appropriate antibody combination.  Antibodies used for staining included: NK1.1; 2B4; 
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A1 (mouse IgG2a,k); 5E6 (mouse IgG2a,k); 4E5 (rat IgG2a,k); HBF-719 (mouse 

IgG1,k); 4D11 (rat IgG2a,k); YLI-90 (mouse IgG1,k); CD94 (rat IgG2a,k) were obtained 

from BD Pharmingen (San Jose, CA).  C7 (hamsterIgG1) was purchased from 

eBioScience (San Diego, CA).  3D10 (rIgG1) was conjugated to biotin and used for 

staining Ly49H as previously described (81). The anti-KLRE1 (7E8) was previously 

described and was conjugated to biotin and revealed with SA-APC as described here 

(267). Samples were acquired on a FACS Calibur and analyzed using FlowJo6.3.  Dead 

cells were excluded from the analysis based on exclusion of the 7AAD dye. 

 

LAK cultures and cytolysis assays 

 Spleens were harvested and prepared into a single cell suspension from SHIP-/- 

and WT mice.  Whole splenocytes were red blood cell lysed for 5 minutes with RBC 

lysis buffer.  Cells were then spun down at 300xG for 5 minutes and resuspended at 

2.5x108 cells/mL in miltenyi buffer which consists of PBS, 0.5% FBS, 0.5% HEPES, and 

EDTA.  Cells were then prepared for enrichment with the Miltenyi Mouse NK cell 

enrichment kit.  The lineage specific antibody cocktail consisting of CD4, CD5, CD8, 

CD19, Gr-1, and Ter119 was added to the whole splenocytes at a concentration of 

5µL/1x107 cells for 10 minutes in a refrigerator.  An additional 30µL of media per 1x10 7 

cells was then added to each sample.  Anti-biotin microbeads were then added at a 

concentration of 10µL/1x107 cells and incubated in the refrigerator for 15 minutes.  Cells 

were then washed and resuspended in miltenyi buffer at a concentration of 200x106 

cells/mL.  The cells were then run on the AutoMac (Miltenyi) on the DepleteS program.  
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Percent of cells recovered varied from 5 to 25% between SHIP-/- and WT NK cells with a 

purity of 10-60%.   

 

Enriched NK cells were plated at a density of 2x106 cells per mL in 6-well dishes.  

Cells were cultured for seven days in activation media consisting of RPMI, 10% FBS, L-

glut, Penicillin/Streptomycin, Na-pyruvate, non-essential amino acids and 2000units/mL 

human rIL2 (Proleukin).  On day 1 of culture, cells were supplemented with 1mL of fresh 

activation media.  On day 3, non-adherent cells were removed through a demi-depletion 

of 1-2mL and fresh media was added to the cultures.  On day 4-6 media was added as 

necessary.  On day 7 a standard 4 hour chromium release assay was performed.  On the 

day of the experiment target cells were resuspended at 1x106cells/mL in chromium 

release media, consisting of RPMI with 3% FBS and HEPES.  100µCi of 51Cr was added 

to 1x106 target cells and then incubated for 60 minutes at 37°C with gentle agitation 

every 15 minutes.  After incubation target cells were spun down at 300xG for 5 minutes 

and washed twice with 3mL of chromium media.  The target cells were then counted and 

resuspended at 3000 cells/100µL in chromium media.  In order to remove the LAK cells 

from culture they must be lifted through the use of PBS with EDTA.  The first step is to 

remove the non-adherent and dead cells from the top of the culture through removal of 

the top 1-2mL of media.  The remaining media is then pipetted up and down to free loose 

cells.  The media, containing the freed LAK cells, is removed and placed on ice.  2mL of 

cold PBS-EDTA was then added to each well and placed at 4°C for 10-15 minutes.  Over 

exposure to the EDTA, or exposure at warmer temperatures can prove hazardous to the 

LAK cells, so care was taken to assure the cells remained at 4°C.  After the 10-15 minute 
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incubation the remaining cells were freed from the plate through pipetting.  LAK cells 

were then counted and spun down at 300xG for 5 minutes and resuspended in chromium 

media such that the appropriate number of effector cells were in 100µL of media.  NK 

cells and target cells were then combined in 3 ratios, 60:1, 20:1 and 6.33:1 in 96 well 

plates at a total volume of 200µL.  Target cell numbers were maintained at 3000 cells for 

all experiments.  Plates were spun down at 200xG for 1 minute.  The cells were then 

incubated at 37°C for 4 hours.  After incubation the top 100µL of supernatant was 

collected and measured for radioactivity on a gamma counter (Perkin Elmer 

Wizard1470).  Spontaneous release controls were performed in the absence of effector 

cells.  Maximal release was measured by adding 10% Triton-X to the target cells alone.  

Percent lysis was calculated by the following formula.  100 X (experimental CPM – 

spontaneous release CPM) / (maximum release CPM – spontaneous release CPM).  All 

experiments were performed in triplicate and results were verified with a separate 

experiment performed on a different date.       

 

Antibody blocking experiments 

 Antibody blocking experiments were performed in the same manner as standard 

cytotoxicity experiments except for the addition of the blocking antibody.  Target cells 

were loaded normally and placed at 3000 cells/100µL in chromium media.  The target 

cells were then incubated with anti-CD16/32 for 15 minutes to block Fc receptors.  Both 

the target cells that were to be blocked with anti-CD48 as well as the unblocked controls 

underwent Fc blocking.  Target cells were then incubated with anti-CD48 (BCM1 clone 

from eBioscience) at 1µg per million cells for 15 minutes.  All antibody incubations were 
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done at room temperature due to the fact that the cooling of target cells to 4°C seemed to 

have a deleterious effect to chromium loading.  The anti-16/32 and CD48 antibody was 

not washed off prior to addition of the effector cells.  A normal cytotoxicity assay 

described above was then performed.       

 

Statistical analysis 

 Statistical analysis was done using Graphpad Prism.  The statistical test that was 

performed to compare receptor expression levels, splenic IUdR uptake, as well as percent 

lysis in chromium release assays was a Students two-tailed T-test.  N=3 except where a 

greater N is indicated.  Results were considered significant with a p<0.05.   
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Chapter 3 

Inappropriate Recruitment and SHP1 Activity is Responsible for Receptor Dominance in 

the SHIP-deficient NK Cell 

 

Introduction 

The process by which an NK cell recognizes a target cell and delivers a sufficient 

signal to trigger target lysis is determined by an array of inhibitory and activating 

receptors on the cell surface.  NK discrimination of self from altered-self involves 

inhibitory receptor recognition of MHC-I molecules (50) and non-MHC ligands like 

CD48 and Clr-1b(131, 262, 268, 269).  NK recognition of infected or damaged cells 

(altered-self) is coordinated through stress induced ligands (e.g., MICA, MICB, Rae1, 

H60, Mult1) or virally encoded ligands (e.g., m157, hemagluttinin) recognized by various 

activating receptors, including NKG2D, Ly49H and NKp46/Ncr1 (112, 145, 259, 260, 

270). 

 

 The process of initial target cell recognition and the recruitment of appropriate 

downstream signaling molecules to the NK synapse is carefully coordinated in order for the NK 

cell to effectively kill the target.  Although many of the key players in the process are known, the 

manner in which these disparate steps and pathways are coordinated is less well understood. 

(271-273).  NK activating receptors, such as NKG2D and Ly49H, upon ligand engagement are 
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able to bind DAP10 or DAP12 molecules that contain an ITAM or YxxM motif (102, 274).  This 

then allows for the recruitment of various effectors of cell signaling, including the Src and Syk 

related protein tyrosine kinases that subsequently lead to the activation of more distal effector 

pathways such as the PI3K and MAP/ERK pathways (271, 275-277).  Inhibitory receptors that 

engage self-ligands can oppose activation of these pathways through the recruitment of various 

SH2 domain-containing phosphatases to their ITIM.  These include SHP1 and SHP2, which are 

responsible for the removal of tyrosine phosphates (76, 77, 278, 279) and the inositol 

phosphatase SHIP (216), which is responsible for the removal of the 5’ phosphate from 

PI(3,4,5)P3 (208, 209). 

 

2B4 is a member of the SLAM related receptors (121, 133).  It functions through 

the recognition of another SLAM family member, CD48, that is ubiquitously expressed 

on cells of the hematopoietic system (128, 129).  2B4 has a complex role in NK cell 

function and physiology that remains an active area of investigation.  Depending on the 

context 2B4 has been shown to act as both an inhibitory and activating receptor (130-

138).  This is likely due, at least in part, to the ability of 2B4 to differentially recruit 

various downstream effectors of cell signaling.  Under different signaling contexts and in 

different species 2B4 can recruit SAP, EAT-2, FynT, SHP1, PI3K and SHIP (133, 139-

142).  How the differential recruitment of these signaling entities is controlled is not 

completely understood.  However, which molecules are recruited and thus which signal is 

propagated following CD48 engagement may be influenced by the ratio of 2B4 isoforms 

expressed in the NK cell.  Two 2B4 isoforms have been identified in mice, short (2B4S) 

and long (2B4L), that were proposed to have activating and inhibitory signaling 
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capacities, respectively (134).  Although the exact function of these two isoforms remains 

to be defined, it is feasible that the different intracellular domains within these isoforms 

could recruit different effectors of cell signaling. 2B4 could also mediate various 

signaling outcomes through changes in the availability or recruitment of different 

signaling molecules.  For instance, it has been shown that there are diminished levels of 

the SAP protein in immature human NK cells.  The lack of this key activating molecule 

in the cell appears to lock 2B4 into an inhibitory signaling mode (138).  In other SLAM 

family members, namely CD150, there is evidence that the presence or absence of SAP 

can regulate the binding of both SHP1 and SHIP to the immunoreceptor based tyrosine 

switch motifs (ITSM) of this receptor (127). 

 

 We have previously demonstrated that the NK receptor repertoire is highly 

disrupted by SHIP deficiency (216, 280).  This repertoire disruption leads to receptor 

dominance by 2B4 such that inhibitory signals from 2B4 repress killing of complex 

targets (280).  In this study we define the molecular basis for 2B4’s dominance of key 

NK activating receptors for both stress-induced and virally-encoded NK activating 

ligands. 

 

RESULTS 

2B4 and SHP expression in SHIP-deficient NK cells  

 We previously showed that 2B4 levels are increased on the surface of SHIP-/- NK 

cells.  To determine if this increase is due to increased expression of 2B4, rather than 

increased surface deposition, we blotted whole cell lysates prepared from sorted SHIP-/- 
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and WT NK cells for the presence of 2B4 (Fig. 12A).  This analysis reveals, consistent 

with our previous FACS analysis, that steady state levels of 2B4 are increased in SHIP-/- 

NK cells.  We also find that the ratio of 2B4S to 2B4L is skewed towards the long 

isoform (2B4L) in the SHIP-/- NK cell relative to WT NK cells.  In addition to 2B4, 

whole cell lysates (WCL) were blotted for SHP1 and SHP2 (Fig. 12B,C).  This revealed 

that like 2B4, SHP1 is over-expressed in SHIP-/- NK cells as compared to WT.  In 

contrast SHP2 levels are consistently comparable between SHIP-/- and WT NK cells. 

 

 

 

Figure 12.  Expression of signaling molecules in NK WCL.  NK1.1+ CD3- NK cells 

were sorted from spleens of SHIP-/- (-) and WT (+) mice.  WCL were prepared and 

Western blots performed for the indicated protein, blots were subsequently stripped and 

reprobed for actin as a loading control.  A) Blots were probed for 2B4 revealing an 

isoform bias in the SHIP-/- NK cell.  B) SHP1 C) SHP2.  These Western blots are 

representative of three independent experiments. 
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Increased recruitment of SHP1 to 2B4 in SHIP-deficient NK cells 

 Due to the overexpression of 2B4, the bias towards the 2B4L isoform and SHP1 

overexpression we hypothesized that there might be a qualitative change in signals 

emanating from 2B4 in SHIP-/- NK cells.  To examine this possibility, we prepared 2B4 

IPs from sorted SHIP-/- and WT NK cells (Fig. 13).  Given the increase of SHP1 in SHIP-

/- NK cells we explored the recruitment of it as well as SHP2 to 2B4 (Fig. 13A).  In these 

blots we see a substantial increase in the co-IP of SHP1 to 2B4 in the SHIP-/- NK cell as 

compared to WT NK cells.  However, no change is seen in SHP2 recruitment to 2B4 

between SHIP-/- and WT NK cells.  These blots were subsequently stripped and re-probed 

for 2B4.  We were then able to quantitate the amount of SHP1, SHP2 and 2B4 present in 

these IPs.  This allowed us to compare the relative amount of each of these proteins 

present in the IPs (Fig. 13B).  Through this comparison we were able to show that there is 

approximately 2-fold more 2B4 in the SHIP-/- 2B4 IPs compared to WT.  This 2-fold 

greater amount of 2B4 in the SHIP-/- NK cell was expected due to the fact, that as we 

have previously shown, there is approximately 2-fold increase in the amount of 2B4 on 

the surface of SHIP-/- NK cells as measured by flow cytometry (280).  Therefore if equal 

cell equivalents were loaded we would expect ~2-fold more 2B4 in the IPs of SHIP-/- NK 

cells as compared to WT IPs.  We were also able to show that in the SHIP-/- IPs there is at 

least a 10-fold increase in SHP1 recruitment , so although there is more 2B4 in SHIP-/- 

IPs there is dramatically more SHP1.  We also performed this same analysis of SHP1 

recruitment to 2B4 using a chemiluminescent secondary and a Licor Odyssey imager.  

This allowed us once again to quantitate the amount of SHP1 recruited to 2B4.  Through 

this technique we were able to reconfirm our SHP1 finding showing that there is 
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approximately 16 times more SHP1 recruited to 2B4 in the SHIP-/- NK compared to the 

WT.   

 

Given the key role of SHIP in opposing PI3K signaling, we blotted for the PI3K 

subunits p110 and p85 (Fig. 13D, E).  In both instances we see a small but consistent 

increase in the association of 2B4 with both PI3K subunits in SHIP-/- NK cells.  This 

change likely reflects increased 2B4 expression in SHIP-deficient NK cells, rather than 

preferential recruitment of these PI3K subunits.  EAT-2 has been proposed to be a key 

mediator of the 2B4 inhibitory pathway (139), and therefore we also blotted 2B4 IPs for 

EAT-2 where we see no appreciable difference (Fig. 13F).   
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Figure 13.  Recruitment of signaling molecules to 2B4.  NK1.1+ CD3- NK cells were 

sorted from spleens of SHIP-/- (-) and WT (+) mice.  WCL were then prepared from the 

purified NK cells and 2B4 IPs prepared.  A) 2B4 and its isotype control were IP in 

parallel.  The IPs were then blotted for SHP1 and SHP2.  2B4 was blotted in the IPs to 

determine the total amount of receptor that was precipitated in order to normalize the 

samples.  (* WCL control)  B)  The levels of SHP1, SHP2 and 2B4 present in the IPs 

were quantified by Imagequant software.  These ratios were then compared in the bar 

graph showing that although there is an increase in 2B4 in the null IP there is a much 

greater increase in SHP1.  C) SHP1 was probed for in 2B4 IPs using a fluorochrome 

tagged secondary and developed on a Licor Odyssey imager allowing the intensity of the 

SHP1 bands to be quantitated.  The resulting values are shown below each band in 

arbitrary fluorescence units (FU)  D) p110 subunit of PI-3-Kinase WB on 2B4 IPs E) p85 

subunit of PI-3-Kinase WB on 2B4 IPs F) EAT-2 WB on 2B4 IPs.  Cells were pooled 

from multiple animals to obtain sufficient numbers.  These IP and Western blots are 

representative of three independent experiments performed with separate samples on 

different dates.   

 

 Given that our functional assays of 2B4’s impact on NK cytolytic function are 

performed with LAK cells we also examined SHP1 and SHP2 recruitment to 2B4 

receptor complexes in SHIP-/- and WT LAK cells.  As was observed with freshly isolated 

NK cells there is a dramatic increase in the recruitment of SHP1 to 2B4 in activated 

SHIP-/- NK cells compared to WT where SHP2 remains equal in the same cells (Fig. 

14A).  Once again we were able to quantitate the amount of SHP1, SHP2 and 2B4 
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present in the 2B4 IPs.  This finding agreed with the finding in resting NK cells that even 

though there is a 2-fold increase in 2B4 expression in the SHIP-/- NK cell the increased 

recruitment of SHP1 is much greater.  Taken together, the analysis of both resting and 

activated NK cells suggests that 2B4 dominance of activating receptors and the 

hyporesponsiveness of SHIP-/- NK cells could be due to an inappropriate degree of SHP1 

recruitment to 2B4 receptor complexes.     

 

 

Figure 14.  Recruitment of signaling molecules to 2B4 in activated NK cells.  2B4 and 

its isotype control were immunoprecipitated in parallel from WCL of SHIP-/- (-) and WT 

(+) LAK cells.  IPs were resolved by SDS-PAGE and then Western blotted.  A)  SHP1 

and SHP2.  2B4 was blotted in the 2B4 IPs in order to normalize the amount of receptor 

present in the IP.  (*WCL control).  B)  SHP1, SHP2 and 2B4 levels were quantified 

using Imagequant software and compared in a bar graph, showing that SHP1 is 

dramatically over-recruited to 2B4 in the SHIP-/- LAK cells compared to the WT. These 

IP and Western blots are representative of three independent experiments. 

 

Broad inhibition of tyrosine phosphatase activity restores SHIP-/- NK cytolytic function 
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 Given the inappropriate degree of SHP1 recruitment to 2B4 in SHIP-/- NK cells 

we explored the possibility of using chemical inhibitors to block its tyrosine phosphatase 

activity to determine if this could restore killing of complex targets by SHIP-deficient 

NK cells.  We first used NaOV, a broadly acting tyrosine phosphatase inhibitor to 

counteract the effects of the SHP1 over-recruitment to 2B4 (Fig. 14A).  We find that the 

addition of 100µM sodium orthovanadate to SHIP-/- NK cytolysis assays restores their 

ability to mediate efficient killing (Fig. 15A).  Importantly, we consistently observe no 

increased killing by WT LAK cells against either RMA or RMA-Rae1+ targets following 

the addition of NaOV.  However, to our surprise we observed that NaOV treatment 

increased the capacity of SHIP-/- NK cells to kill RMA parental cells that do not express 

the NKG2D ligand, Rae1.  In fact, SHIP-deficient NK cytolysis of RMA parental targets 

exceeds that of WT LAK cells.  We have consistently observed this supernormal killing 

of RMA targets in three separate studies with NaOV-treated SHIP-/- LAK cells.  This 

finding indicates phosphatase inhibition can restore the ability of SHIP-/- NK cells to kill 

complex targets via NKG2D, while also expanding the capacity of SHIP-deficient NK 

cells to kill tumor cells in the absence of ligands for NKG2D.  We also tested the ability 

of NaOV to increase cytotoxicity with BaF3 and m157+ BaF3 targets (Fig. 15B).  Once 

again we observe that NaOV is able to increase the capacity of SHIP-/- NK cells to kill 

both the parental BaF3 cells as well as the activating ligand positive m157+ BaF3 cells.  

Although these differences are not as dramatic as is seen in NKG2D killing.  Nonetheless 

we consistently observe increased killing with both BaF3 parental and m157+ targets.  

Taken together with our previous findings demonstrating 2B4 dominates NKG2D and 

Ly49H in SHIP-deficient NK cells (280), the ability of NaOV to restore killing by SHIP-/- 
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NK cells against multiple targets indicates increased tyrosine phosphatase activity is 

locking the SHIP-/- NK cell into a hyporesponsive state.     

 

 

Figure 15.  Restoration of SHIP-/- cytotoxicity with NaOV treatment.  Standard four-

hour 51Cr release assays were performed with SHIP-/- (-/-) or WT (+/+) LAK cells.  A 

ratio of 30:1 and 3000 target cells were used for all conditions.  All experiments were 

performed in triplicate.  Assays were performed in the presence of 100µM NaOV 

(NaOV) or with media alone (-).  All graphs are representative of 3 or more independent 

experiments.  (*=p<0.05).  A)  RMA or Rae1+ RMA transfectants were used as targets.  

B) BaF or M157+ BAF transfectants were used as targets.  

 

 

Inhibition of SHP1 activity restores SHIP-/- NK cytolytic function 

 To further test the hypothesis that inappropriate recruitment of SHP1 to 2B4 is 

locking SHIP-/- NK cells into a hyporesponsive state we tested several novel low MW 

compounds that have the ability to inhibit the phosphatase activity of SHP1 at µM levels.  
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These compounds were identified during a screen for SHP2 inhibitors (281).  We 

screened 6 compounds with predicted µM activity against SHP1 and 2.  Of these 6 

compounds we identified one, NSC119910 (Fig. 16A), which was effective in restoring 

the cytolytic capacity of SHIP-/- NK cells.  The selectivity of this compound was tested in 

vitro against SHP1, SHP2 and PTP1b  (Fig. 16B).  In these experiments we were able to 

show that NSC119910 is approximately 10-fold more selective to SHP1 and 

approximately 100-fold more selective to SHP2 than a very closely related tyrosine 

phosphatase PTP1b. 

 

 We next tested the ability of NSC119910 to restore killing in the SHIP-/- NK cell.  

The effective in vitro dose at which NSC119910 was able to restore SHIP-/- cytotoxicity 

was determined in a dose titration experiment.  Through this 67.32µM was identified as 

the effective dose (Fig. 16C).  This concentration, 67.32µM of NSC119910, was used for 

all subsequent standard 51Cr release assays.  The addition of NSC119910 significantly 

restored killing of Rae1+ RMA as well as parental RMA targets by SHIP-/- NK cells, 

while it had no effect on the cytolytic activity of WT NK cells against Rae1+ targets (Fig. 

16D). The addition of NSC119910 to LAK cells had no effect on the expression levels of 

NKG2D (Fig. 16F).  We have also performed these experiments with m157+ BaF3 

targets. As shown in figure 16 the addition of NSC119910 also increased SHIP-/- NK 

killing of m157+ targets.  Although the increase is not as dramatic as we observe with 

NKG2D mediated cytolysis, this increase has been observed consistently in multiple 

cytolysis assays with the m157+ BaF3 targets.  These tyrosine phosphatase inhibition 

studies when paired with our biochemical determination of inappropriate SHP1 
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recruitment to 2B4 in SHIP-/- NK cells provides a mechanistic rationale for the 

hyporesponsiveness of SHIP-/- NK cells.  
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Figure 16.  Restoration of cytotoxicity with SHP1/2 inhibitor NSC119910.  A)  

Molecular structure of NSC119910.  The structure of this molecule was confirmed by 

proton NMR (see Materials and Methods).  B) NSC119910 was tested for its ability to 

inhibit the phosphatase activity of purified SHP1, SHP2 and PTP1b.  C) The in vivo 

effective dose of NSC119910 was determined through a dose titration experiment.  10, 25 

and 50X the in vitro IC50 of 2.7µM was used.  D-E) Standard 4-hour 51Cr release assays 

were performed with SHIP-/- (-/-) or WT (+/+) LAK cells.  A ratio of 30:1 and 3000 

target cells were used for all conditions.  All conditions were performed in triplicate.  

Assays were performed in the presence of 67.32µM NCI119910 or media alone (-).  

These cytolysis studies with NSC119901 are representative of three independent 

experiments.  (*=p<0.05)  D)  Rae1+ RMA transfectants were used as targets.  E) M157+ 

BaF3 transfectants were used as targets.  F) SHIP-/- (--) or WT (++) cells were incubated 

with 67.32µM NSC119910 (119910) or media alone (CNT) for 4 hours.  The cells were 

then stained for NK1.1, CD3 and NKG2D and analyzed for NKG2D expression.   

 

Discussion 

 Previously we have shown that SHIP-deficiency leads to an NK receptor 

repertoire disruption such that 2B4 acts as a dominant inhibitory receptor (280).  In this 

study we have extended these findings to identify a molecular mechanism responsible for 

2B4 receptor dominance in SHIP-/- NK cells.  We have previously shown that there is 

significant over representation of 2B4 on the surface of SHIP-/- NK cells.  We have 

extended this by demonstrating that in the SHIP-deficient NK cell there is not only more 

surface deposition of 2B4, but also significantly more 2B4 protein expressed by SHIP-/- 
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NK cells.  We have also determined that when compared to the WT NK cell, there is a 

bias in the SHIP-/- NK cell towards the 2B4L isoform.  We examined the various 

signaling molecules that are recruited to 2B4 in SHIP-/- NK cells.  We found that there is 

a small increase in the PI3K subunits p110 and p85 that is most likely attributable to 

increased 2B4 expression.  We have also identified that there is no demonstrable 

difference in either SHP2 or EAT-2 recruitment to 2B4.  Furthermore we have identified 

that there is approximately 10 to16 times more SHP1 recruited to 2B4 in SHIP-/- NK cells 

as compared to WT.  We were able to reverse the effect of the SHP1 over-recruitment by 

inhibiting its enzymatic activity using either a broad acting tyrosine phosphatase inhibitor 

(NaOV) or a more selective SHP inhibitor (NSC119910).  These results have led us to 

hypothesize that SHIP-deficiency leads not only to 2B4 receptor dominance, but 2B4L 

bias, as well as altered inhibitory signaling within the SHIP-/- NK cell.  We have 

developed a model incorporating the key differences that exist within 2B4 signaling in 

the SHIP-/- and WT environment (Fig. 17).   
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Figure 17.  Model figure of 2B4 signaling.  A) 2B4 signaling in a WT NK cell.  Both 

short and long isoforms of 2B4 are present as well as possible activating and inhibitory 

signaling molecules.  The signal that is delivered, either activation or inhibition, will 

depend upon the ligand present and the context of the signal.  B) 2B4 signaling in a SHIP-

/- NK cell.  There is a lack of SHIP expression and bias towards the 2B4L isoform.  These 

2 factors lead to a profound increase in SHP1 recruitment and therefore tip the balance 

towards constitutive inhibitory signaling.  The lack of SHIP may also allow unopposed 

PI3K activity at 2B4 that may in turn promote increased 2B4 expression.  

 

 Given that SHIP is a key inhibitor of the PI3K pathway, we initially considered 

the possible over-recruitment of the PI3K subunits, p110 and p85 to 2B4 might be 

responsible for the qualitative change in 2B4 function in SHIP-deficient NK cells.  Given 

that the inhibition of SHP1 was able to restore killing in SHIP-/- NK cells to WT levels it 

stands to reason that PI3K does not play a major role in rendering SHIP-/- NK cells 



 66  

hyporesponsive.  PI3K could still play a subtle and indirect role in 2B4 receptor 

dominance.  As is detailed in figure 17, in the absence of SHIP, PI3K activity may not 

need to be increased, but rather its’ unopposed activity could potentially alter 2B4 

expression and contribute to receptor dominance.  Previous studies have identified AP-1 

binding sites in the promoter of 2B4(282).  PI3K can trigger nuclear translocation of AP-

1 via activation of PKC-δ (283), and thus unopposed PI3K activity at 2B4 could 

potentially increase 2B4 expression and/or bias isoform usage towards 2B4L.  

 

 2B4 has proven to have a somewhat complex role in NK biology with in vitro and 

in vivo experiments indicating both activating and inhibitory roles in NK function (130-

138).  This disparity has been attributed, to some extent, to the various signaling adaptors 

that can potentially associate with the ITSM of 2B4 (133, 139-142).  Both SHP1 and 

SHP2 have been shown to be recruited to 2B4 in certain contexts (137, 140, 142) and are 

also key regulators of inhibitory signaling for MHC-I receptors on NK cells.  In this study 

we identified a ~10 to 16 fold increase in SHP1 recruitment to 2B4 in the SHIP-/- NK cell.  

This is a key finding given that we have previously shown that the surface expression of 

2B4 is increased only ~2 fold in the SHIP-/- NK cell compared to the WT NK cell (280).  

There is clearly a qualitative change in the 2B4 receptor complexes such that a much 

larger proportion of 2B4 molecules associate with SHP1 in the absence of SHIP 

expression.  2B4 has up to 4 tyrosine residues in its cytoplasmic tail that can be 

phosphorylated and recruit downstream signaling molecules (140).  Both SHIP and SHP1 

have SH2 domains that can bind overlapping phosphotyrosines in 2B4 (140).  Thus, in 

the SHIP-deficient NK cell there is likely greater access to 2B4 by SHP1.  This dramatic 
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increase of SHP1 at 2B4 receptor complexes could alter the balance of signaling in the 

SHIP-deficient NK cell.  Importantly 2B4 has been shown to be recruited to the NK 

synapse (284, 285).  Therefore, the increased presence of SHP1 at the NK synapse in 

SHIP-/- NK cells is likely to terminate activating signals before they propagate to more 

distal effectors required for NK function. 

  

 In this study we utilized two phosphatase inhibitors; first, a broad acting 

phosphatase inhibitor NaOV, second, a more specific SHP inhibitor NSC119910.  We 

utilized both of these compounds in an attempt to counteract SHP1 over-recruitment and 

thereby restore killing by the SHIP-/- NK cells to WT levels.  NaOV was able to 

successfully restore killing by SHIP-/- NK cells of Rae1+ cells to WT levels.  Interestingly 

the killing of RMA parental cells by SHIP-/- NK cells was also significantly increased.  

We propose that this increase in SHIP-/- killing, in the absence of a strong activating 

ligand, results from the under representation of MHC specific inhibitory receptors on 

SHIP-/- NK cells, that would normally prevent WT killing of MHC–I+ targets lacking 

strong activating ligands.  Therefore, when inhibitory dominance of 2B4 is released by 

phosphatase blockade this presumably enables supernormal killing of MHC-I+ targets 

that lack activating ligands.  Our results with the BaF3 targets are less clear but 

nonetheless provocative.  Most importantly we see a consistent increase in SHIP-/- 

cytotoxicity in the presence of NaOV reconfirming the ability of phosphatase blockade to 

increase cytotoxicity of the hyporesponsive SHIP-/- NK cell against BaF3 and m157+ 

cells.  Importantly when we later tested the more specific NSC119910 we do not see the 
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same increase of killing of m157+ cells by WT LAK cells indicating that the increase we 

see with NaOV is due to non-SHP1 related effects. 

 

 In addition to restoration of SHIP-/- killing we see an increase in the killing of 

RMA cells by WT NK cells.  This is not only a plausible result, it is an expected and 

positive result.  In the WT NK cell the normal MHC inhibitory receptors are present and 

functioning, in opposition to the SHIP-/- NK cell where these receptors are down-

regulated.  SHP1 and SHP2, key molecules to inhibitory signaling, are also present and 

functional in the WT NK cell.  Therefore in the presence of a potent SHP inhibitor there 

would be a paucity of inhibitory signaling.  The key is therefore that when inhibitory 

signals, mediated through SHP, are removed, be that of SHP recruited to Ly49 or 2B4, 

cytotoxicity is increased.  Importantly in the case of the SHIP-/- cytotoxicity, it was not 

just increased but restored to the same level of the WT undergoing SHP inhibition.  For 

undetermined reasons the restoration of BaF m157+ cells is not as dramatic.  What this 

does indicate is that that there are qualitative differences that exist between the signaling 

milieus at play between RMA, BaF and the LAK cells.  Such that in NKG2D mediated 

cytotoxicity 2B4 is the not only a dominant inhibitory receptor, it is likely the sole 

inhibitory receptor restraining killing.  These results strongly reinforce that 2B4 is the 

dominant inhibitory receptor in the SHIP-/- NK cells as well as providing strong proof 

that SHP1 over-recruitment is the molecular mechanism behind this dominance.    
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Materials And Methods 

Animals.   

The SHIP-/- mice  used in this study were previously created in our lab (See Chp. 

1).  Mice were maintained by intercrossing SHIP+/- mice (F10 to the C57BL6/J 

background) thereby allowing for sufficient numbers of both SHIP-/- as well as WT 

littermates for all experiments.  All experiments were performed with SHIP-/- and WT 

littermates between 6-9 weeks of age.  

 

LAK cultures and cytolysis assays.  

Spleens were harvested and prepared into a single cell suspension from SHIP-/- 

and WT mice.  Whole splenocytes were red blood cell lysed for 5 minutes with RBC 

lysis buffer.  Cells were then spun down at 300xG for 5 minutes and resuspended at 

2.5x108 cells/mL in miltenyi buffer which consists of PBS, 0.5% FBS, 0.5% HEPES, and 

EDTA.  Cells were then prepared for enrichment with the Miltenyi Mouse NK cell 

enrichment kit.  The lineage specific antibody cocktail consisting of CD4, CD5, CD8, 

CD19, Gr-1, and Ter119 was added to the whole splenocytes at a concentration of 

5µL/1x107 cells for 10 minutes in a refrigerator.  An additional 30µL of media per 1x10 7 

cells was then added to each sample.  Anti-biotin microbeads were then added at a 

concentration of 10µL/1x107 cells and incubated in the refrigerator for 15 minutes.  Cells 

were then washed and resuspended in miltenyi buffer at a concentration of 200x106 

cells/mL.  The cells were then run on the AutoMac (Miltenyi) on the DepleteS program.  

Percent of cells recovered varied from 5 to 25% between SHIP-/- and WT NK cells with a 

purity of 10-60%.   
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Enriched NK cells were plated at a density of 2x106 cells per mL in 6-well dishes.  

Cells were cultured for seven days in activation media consisting of RPMI, 10% FBS, L-

glut, Penicillin/Streptomycin, Na-pyruvate, non-essential amino acids and 2000units/mL 

human rIL2 (Proleukin).  On day 1 of culture, cells were supplemented with 1mL of fresh 

activation media.  On day 3, non-adherent cells were removed through a demi-depletion 

of 1-2mL and fresh media was added to the cultures.  On day 4-6 media was added as 

necessary.  On day 6-7 a standard 4 hour chromium release assay was performed.  On the 

day of the experiment target cells were resuspended at 1x106cells/100µL in chromium 

release media, consisting of RPMI with 3% FBS and HEPES.  100µCi of 51Cr was added 

to 1x106 target cells and then incubated for 60 minutes at 37°C with gentle agitation 

every 15 minutes.  After incubation target cells were spun down at 300xG for 5 minutes 

and washed twice with 3mL of chromium media.  The target cells were then counted and 

resuspended at 3000 cells/100µL in chromium media.  In order to remove the LAK cells 

from culture they must be lifted through the use of PBS with EDTA.  The first step is to 

remove the non-adherent and dead cells from the top of the culture through removal of 

the top 1-2mL of media.  The remaining media is then pipetted up and down to free loose 

cells.  The media, containing the freed LAK cells, is removed and placed on ice.  2mL of 

cold PBS-EDTA was then added to each well and placed at 4°C for 10-15 minutes.  Over 

exposure to the EDTA, or exposure at warmer temperatures can prove hazardous to the 

LAK cells, so care was taken to assure the cells remained at 4°C.  After the 10-15 minute 

incubation the remaining cells were freed from the plate through pipetting.  LAK cells 

were then counted and spun down at 300xG for 5 minutes and resuspended in chromium 
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media such that the appropriate number of effector cell were in 100µL of media.  NK 

cells and target cells were then combined at a ratio of 20:1 in 96 well plates at a total 

volume of 200µL.  Target cell numbers were maintained at 3000 cells for all 

experiments.  Plates were spun down at 200xG for 1 minute.  The cells were then 

incubated together at 37°C for 4 hours.  After incubation supernatants were collected and 

measured for radioactivity on a gamma counter (Perkin Elmer Wizard1470).  

Spontaneous release controls were performed in the absence of effector cells.  Maximal 

release was measured by adding 10% Triton-X to the target cells alone.  Percent lysis was 

calculated by the following formula.  100 X (experimental CPM – spontaneous release 

CPM) / (maximum release CPM – spontaneous release CPM).  All experiments were 

performed in triplicate and results were verified with a separate experiment performed on 

a different date.       

 

Inhibitors.   

All experiments using sodium orthovanadate (NaOV) were performed with 

100µM activated NaOV.  NaOV was activated by adjusting the pH of a 200mM stock to 

pH 10.0 by the addition NaOH or HCl as necessary followed by boiling until the solution 

becomes colorless and then cooling to room temperature.  This process is then repeated 

until the pH of the NaOV stabilizes at 10.0 (286).  For all NaOV cytotoxic experiments 

LAK cells and targets cells were prepared as described above.  Prior to incubation with 

targets cells NaOV was added to the LAK cells and allowed to incubate for 15 to 30 

minutes at room temperature.  Target cells were than added to the wells and a normal 

cytotoxic assay was performed.  Controls for NaOV inhibition assays consisted of normal 
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cytotoxic assays in the absence of NaOV to measure normal lysis as well as spontaneous 

release controls in the presence of NaOV. 

 

NSC119910 was obtained from the Drug Synthesis and Chemistry Branch, 

Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, 

NCI. The structure of NSC119910 was confirmed by proton NMR using a Varian 

Mercury-Plus, Oxford AS400 spectrometer.  The 1H NMR spectrum was recorded at 400 

MHz using DMSO-d6 as solvent and tetramethylsilane (TMS) as an internal standard. 

Chemical shift values are reported in parts per million (δ). The compound shows 

characteristic signals as follows: δ 12.643 (s, 1H, -OH, disappeared on D2O shake), 

12.432 (s, 1H, -OH, disappeared on D2O shake), 10.103 (br s, 1H, disappeared on D2O 

shake), 7.486 (d, J = 9.2 Hz, 1H, Ar), 7.411 (d, J = 9.2 Hz, 1H, Ar), 6.438 (d, J = 8.8 Hz, 

1H, Ar), 6.403 (d, J = 9.2 Hz, 1H, Ar), 2.024 - 0.796 (m, cyclohexyl moiety).   

 

For chromium release assays NSC119910 was reconstituted in DMSO at 27mM.  

NSC119910 was then added to LAK cells immediately before the addition of target cells 

on ice for a final concentration of 67.32µM.  Controls were performed in parallel with 

DMSO alone as well as no inhibitor.  Spontaneous release controls were also performed 

in the presence of NSC119910.   

 

Western Blots and Immunoprecipitates.   

All western blot and IP studies were performed with pure cell populations ( > 

95% pure).  For freshly isolated NK cells, spleens were removed from SHIP-/- and WT 
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littermates and made into a single cell suspension.  Whole splenocytes and WBM were 

red blood cell lysed for 5 minutes at room temperature in RBC lysis buffer consisting of 

0.15µM NH4Cl, 10mM KHCO3, and 0.1mM EDTA.  Cells were spun down at 300xG for 

5 minutes and then resuspended at 1x106cells/50µL in staining media.  Staining media 

consists of PBS with 3% FBS and HEPES. Cells were then Fc blocked for 15 minutes on 

ice with anti-CD16/32 antibody.  Cells were then stained for sorting with NK1.1 FITC, 

CD3 PE and DAPI.  Cells were stained for 15 minutes on ice and then washed twice with 

staining media.  Cells were resuspended in staining media with 1% FBS for sorting.  All 

cell sorting was performed on a FACS Aria (Beckon Dickson).  Sorts were performed 

with a 70µM nozzle at a rate of 1000-5000 cells/second.  All samples were kept at 4°C 

for the duration of the sort, including the sorted cells which were sorted into staining 

media containing 3% FBS.   

 

After sorting cells were spun down at 300xG for 5 minutes at 4°C and then lysed 

for 30 minutes on ice in a modified TNE buffer consisting of 50mM Tris-HCl, 1% NP-

40, 150mM NaCl, 1mM EDTA, 1mM PMSF, 1mM NaOV, 1mM NaF, and 10µL/mL of 

Protease inhibitor cocktail mix (Sigma Aldrich, Cat. #p8340).  Cell debris was then spun 

down at 15,000xG for 15 minutes at 4°C and the supernatant collected.  For Western 

blots equal cell equivalents for SHIP-/-and WT lysates were brought up to a volume of 

20µL with 4X LDS buffer (Invitrogen) consisting of 250mM Tris-HCl, 20% glycerol, 8% 

LDS, Serva Blue.  DTT was then added to the sample for a final concentration of 50mM 

and the samples were heated for 10 minutes at 90°C.  Samples were then resolved on a 4-

12% Bis-Tris gel (Invitrogen) and transferred to an ECL membrane (Amersham).  Blots 
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were blocked with 5% NFM-PBS-T for 1 hour at room temperature.  Primary antibodies 

were used at varying concentrations; p110(Cell Signaling, 1:1000), p85(Cell signaling, 

1:1000), Eat-2(a kind gift of Andre Veillette, 0.5µg/mL), SHP1 (BD Transduction 

Laboratories, 1:500), SHP2 (1:1000 Cell Signaling), 2B4 (R&D, 0.2µg/mL).  Primary 

antibodies were incubated with the membrane in 5% NFM-PBS-T for 1 hour at room 

temperature or at 4°C for 12 hours.  Primary antibodies were washed off with a minimum 

of three 15 minute washes with PBS-T.  The appropriate anti-IgG HRP secondary for the 

specific primary was used.  Secondaries were incubated with the membrane in 5% NFM-

PBS-T for 1 hour at room temperature.  Membranes were then washed a minimum of 

three times for 15 minutes each wash.  Super Signal HRP detection system (Pierce) was 

then applied to the membrane that was then exposed to film, which was subsequently 

developed.  For blots with high background additional washes were performed as needed 

at room temperature. Quantification was performed using Imagequant software (GE 

Healthcare).  In order to use this software the blot is first scanned as a high resolution tiff.  

The bands of interest are then delineated by the user, as well as the area from which 

background will be calculated.  The software then calculated the integrated density value 

(IDV).  The IDV is calculated by area x (mean Density - background).  To assure that 

areas of differing size did not skew quantitation bands were delineated by boxes of the 

same area between samples that would be directly compared (i.e.: SHP1 between SHIP-/- 

and WT).  For all blots that used a fluorescently tagged secondary all samples and 

western blotting techniques were identical to above except the blocking as well as 

antibody incubation was done in Licor blocking buffer (Licor).  Secondaries of the 

appropriate anti-IgG that were conjugated to an Alexafluor 488 or 680 (Invitrogen) were 
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utilized.  After the secondary antibody was washed of blots were scanned with a Licor 

Odyssey imager rather than using film.  Odyssey software was then used to quantitate the 

protein levels.  Only the whole lanes were user identified and the software delineated the 

individual bands as well as calculating background.  Results were given in an arbitrary 

fluorescent unit (FU) 

 

For IPs after sorting cells were spun down at 300xG for 5 minutes at 4°C and then 

lysed for 30 minutes on ice in a modified TNE buffer consisting of 50mM Tris-HCl, 1% 

NP-40, 150mM NaCl, 1mM EDTA, 1mM PMSF, 1mM NaOV, 1mM NaF, and 10µL/mL 

of Protease inhibitor cocktail mix (Sigma Aldrich, p8340).  Cell debris was then spun 

down at 15,000xG for 15 minutes at 4°C and the supernatant collected.  Equal cell 

equivalents were brought up to 500µL in ice-cold TNE buffer.  Both isotype and 2B4 IPs 

were performed in parallel under the same conditions with an equal number of cell 

equivalents.  All steps were performed at 4°C, all buffers were ice-cold, and all 

centrifugation steps were performed in a pre-chilled centrifuge.  Pre-clearing of WCL 

was performed by adding 50µL anti-mouse IG IP beads (eBioscience) to WCL for 60 

minutes with constant mixing on a rotating mixer.  The beads were then spun down at 

10,000xG for 10 minutes and supernatants were collected and pre-cleared in the same 

manner one additional time.  Cleared lysates were then incubated with an anti-2B4 

antibody (BD) or isotype control (MsIgG2A, BD) for 90 minutes.  50µL of anti-mouse 

IG IP beads were then added to the lysates for 90 minutes while mixing on a rotating 

mixer.  After incubation the beads were washed 6 times by spinning down at 10,000xG 

for 30 seconds and removing supernatant and replacing with fresh TNE lysis buffer.  
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After the last wash 50µL of LDS sample buffer was added to the beads and they were 

heated at 90°C for 10 minutes.  They samples were then spun at 10,000XG for 5 minutes 

and the supernatants were collected and resolved by SDS-PAGE and blotted as described.  

1x106 cell equivalents were loaded into each well for western analysis.     

 

PTP Inhibition Assay.   

PTP activity was measured using the fluorogenic 6,8-difluoro-4-

methylumbelliferyl phosphate (DiFMUP; Invitrogen, Carlsbad, CA) as the substrate.  

Each reaction contained 25mM HEPES, 50mM NaCl, 0.05% Triton, 1mM dithiothreitol, 

20µM DiFMUP, 10nM Microcystin LR, 20nM GST-PTP, and 10µl of test compound or 

dimethyl sulfoxide (solvent) in a total reaction volume of 100 µl in black 96-well plates. 

Reaction was initiated by addition of DiFMUP, and the incubation time was 30 minutes 

at room temperature. DiFMUP fluorescence signal was measured at an excitation of 355 

nm and an emission of 460 nm with a plate reader (Victor2 1420; PerkinElmer Wallac, 

Gaithersburg, MD). IC50 was defined as the concentration of an inhibitor that caused a 

50% decrease in the PTP activity. For IC50 determination, eight concentrations of 

NSC119910 at one-third dilution (~0.5 log) were tested. The ranges of NSC119910 

concentrations used in each PTP assay were determined from preliminary trials. Each 

experiment was performed either in triplicate or duplicate, and IC50 data were derived 

from at least two independent experiments. The curve-fitting program Prism 4 (GraphPad 

Software, San Diego, CA) was used to calculate IC50 values. 
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Statistical Analysis.  

Statistical analysis was done using Graphpad Prism.  The statistical test that was 

utilized was a Students two-tailed T-test.  N=3 except where a greater N is indicated.  

Results were considered significant with a p<0.05.   
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CHAPTER 4 

The NK Kinome 

 

Introduction 

 Over the last few years array and mass spectrometry technologies have enabled 

analysis of the transcriptome (287, 288) and proteome of many cell types, including the 

NK cell (289).  This information has proven to be and will continue to be of significant 

value to the elucidation of molecular mechanisms that govern not only basal cellular 

functions but also some of the more unique tasks of individual cell types including the 

NK cell.  An equally, if not more important goal, is to define not just those proteins that 

are present but rather that are active and particularly the signaling pathways these 

functioning proteins are involved in.   

  

 Enzymes that phosphorylate tyrosine, serine and threonine residues play a major 

role in signaling cascades that determine cell cycle entry, survival and the differentiation 

of cells in the mammalian body, including the hematopoietic system.  Knowing the 

differences that exist within individual proteins as well as complete signaling pathways 

that are active in NK cells and their immature precursors will provide critical information 

for understanding their biology.  Towards this end, we have utilized kinome analysis 

techniques to explore the NK lineage.  Array technology has been developed to measure 
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enzymatic activity between whole cell lysates and protein substrates.  (98, 290-293).  

Specifically, arrays containing multiple target consensus sequences for protein kinases 

have been assembled (294).  Within these arrays 1176 9-12 amino acid peptides have 

been arrayed in duplicate (Fig. 18).  The peptides that have been arrayed are based upon 

known or predicted phosphorylation sites across the mammalian kinome.  This allows for 

a wide ranging detection of serine, threonine, and tyrosine phosphorylation events that 

are mediated via kinases present in whole cell lysates.  This technology has been 

validated by a comprehensive description of the temporal kinetics of phosphorylation 

events induced by lipopolysaccharide stimulation (295). Confidence in the usefulness of 

this technology for studying signal transduction has come from Western blot analysis of 

lipopolysaccharide-stimulated cells, which was corroborated with the demonstration that 

kinase inhibitors effected peptide array phosphorylation patterns consistent with the 

expected action of these inhibitors (295). 
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Figure 18.  Kinome PepChip™.  Diagram showing the layout of peptides on the array.  

Each array has the 1176 peptides arrayed in duplicate.   

 

 The differentiation of the NK cell from NKP to fully functional mature NK cell 

progresses in a linear process that can be followed by the gain and/or loss of surface 

markers (201-203).  These stages of NK development occur in the bone marrow as these 

first steps require the interaction of the NKP with the BM stroma.  The first key surface 

marker is CD122 or the IL2/15Rβ (201, 203).  These receptors have proven to be 

essential to NK development as defects in their signaling lead to defects in NK 

development (204, 205, 296).  It has also been shown that defects in IL-15 signaling 

pathways, such as Jak3 and Stat5a/b can cause defects in NK cell development (206).  

The next major step when a cell moves from NKP to immature NK cell is marked by the 

loss of Mac1 expression.  Resulting in a phenotype of NK1.1+, CD3-, Mac1-/lo.  The next 

steps are marked by the acquisition of the NKR CD94/NKG2 and then the Ly49s and 

finally full functional maturity (202, 203).  The immature NK cells we will be examining 

in this study are from the BM and were identified on the basis of NK1.1+, CD3- and 

Mac1-/lo.  Where the mature NK cells were NK1.1+, CD3- from the spleen.  In this study 

we utilize kinome profiling in order to identify key signaling differences that exist 

between these two cell types. 
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Results 

Obtaining pure cell populations 

This first stage of this study was to obtain pure WCL from the immature and 

mature NK cells.  To this end sorted populations of NK1.1+ CD3- Mac1lo/- immature NK 

cells from the BM and NK1.1+ CD3- mature NK cells from the spleen were obtained 

(Figure 19).  Three independent sorts were performed for each cell type, consisting of a 

minimum of 250,000 cells from which 3 sets of WCL were prepared. 

  

 

  

Figure 19.  Kinome sorting strategy.  Dot plots showing the sorting strategy for mature 

and immature NK cells..  Initial gating strategy is shown in the left panel.  Post-sort 

purity is shown in the right panel.  All plots are after back gating on scatter and live cells.  

A)  NK1.1+ Lin- mature NK cells.  B) NK1.1+, Lin-, Mac1-/lo immature NK cells.  
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Peptide Phosphorylation 

 In order to measure phosphorylation of individual peptides present on the 

PepChip™ WCL from the pure cell populations were applied to the PepChip™ in the 

presence of 33P-ATP and activation mix.  After incubation of the WCL with the peptides 

on the array a phospho-imaging cassette was exposed to the PepChips™. Three sets of 

chips were utilized for each cell type, giving a total of six replicates in total for each 

peptide on the array for each cell type.  Figure 20 shows the resulting images of the six 

chips after developing the phospho-imaging cassette.  These resulting images were 

analyzed using Scanalyze software.  This allowed us to obtain a numerical value for the 

phosphorylation of each individual peptide.  These 6 replicates were then normalized 

across all replicates, providing us with a complete kinome for both mature and immature 

NK cells that could be compared between cell types.  (See appendix 1 for the total 

kinome) 
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Figure 20.  PepChips™ for mature and immature NK cells.  The resulting images 

after phosphor imaging screens are exposed to the PepChips™ and then developed.  

These images were used to determine the phosphorylation signature for A)  Immature NK 

cells and B) Mature NK cells.    

 

Differential kinomes of mature and immature NK cells 

 In order to identify those peptides that are differentially phosphorylated between 

the immature and mature NK cells their kinomes were compared through a Wilcoxon 

rank sum analysis.  Of the 1176 peptides present on the arrays only 3.9% of the peptides 

or 46 spots in total were differentially phosphorylated between the immature and mature 

NK cells.  Indicating as would be expected that these cell types utilize similar signaling 

pathways.  Of these 46 peptides 11 have a higher phosphorylation signature in the mature 

NK cell as compared to the immature cell, leaving 35 to have a higher phosphorylation 

signature in the immature NK cells (Table 1). 

 

Spot Biological function Protein Sequence 
676 Cell Morphogenesis/Diff Fibroblast growth factor receptor 3 STDEYLDLS 
527 Signaling Hematopoietic cell-specific LYN substrate  PEGDYEEVL 
434 NA metabolism Chromodomain-helicase-DNA-binding 1 PSEKSEEIT 
413 Signaling Focal adhesion kinase 1 ETDDYAEII 
855 Signaling Gamma-aminobutyric-acid receptor RDEEYGYEA 
444 NA metabolism Zinc finger protein Rlf  EEELYLEPL 
1024 Signaling Tyrosine-protein kinase JAK3 KRPSFRAKA 
233 Metabolism Pyruvate kinase LRRASVAQL 
224 Metabolism Pyruvate kinase LRRASL 
717 Signaling Fibroblast growth factor receptor 4 VSEEYLDLR 
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755 Signaling Receptor tyrosine-protein kinase ErbB-1 DNPDYQQDF 
941 protein metabolism eIF-2-beta DPTMSKKKK 
637 Metabolism HMG-CoA lyase KAAQISVRGL 
735 Cell growth/Maintenance Troponin T QKAQTERKS 
263 Transcription Runt-related transcription factor 3 SGRGK 
562 DNA repair MutS-alpha RKASRKE 
931 Cell growth/Maintenance Troponin I QHLKSVMLQ 
561 Cell growth/Maintenance Lamin A/C RLRLSPSPT 
886 Signaling Na channel protein type II alpha subunit ERRPSNVSQ 
570 Signaling 14-3-3 protein beta/alpha WTSDTQGDE 
702 Cell growth/Maintenance Microtubule-associated protein tau SKAGSLGNI 
910 Signaling Membrane progestin receptor beta KSRRTI 
896 Signaling Protein-tyrosine phosphatase G1 ERNLSFEIK 
850 Immune response HUSSY-18 QEKESERLA 
903 Transcription Nuclear factor NF-kappa-B p105 subunit FRKLSFTES 
834 Signaling Ca-dependent protein kinase type II gamma  HRQETVEAL 
947 Signaling MEK2 SMANSFVGT 
1085 Transcription Retinoblastoma-associated protein PYKFPSSPLRIPGZ 
954 Transcription Histone H1.2 ASGSFKL 
706 Cell growth/Maintenance Caldesmon DKVTSPTKV 
953 metabolism Neutrophil cytosol factor 1 RKRLSQDAY 
968 Immune response Myelin basic protein  PKRGSGKDG 
707 Signaling Na channel protein type X alpha subunit FRRFTPDSL 
1128 Transport Kell blood group glycoprotein ISITSRKAQ 
1129 Unknown PDZ domain containing protein 3 NFLKTSAGS 
558 Cell growth/Maintenance MARC-kinase substrate  AVASSPSKA 
960 Immune response Complement factor B precursor  TESQSLTLT 
883 Signaling PKA C-alpha IGRFSEPHA 
1084 Signaling MCSF I receptor precursor NDSNYVVKG 
975 Signaling IGF-binding protein 1 LMAPSEEDH 
1170 protein metabolism Phosphorylcholine transferase A KQSPSSSPT 
569 Signaling Opsin 2 TVSKTETSQ 
923 Signaling Centaurin-delta 2 PGGSTPVSS 
963 Immune response Myelin basic protein  RHRDTGILD 
957 Signaling Protein phosphatase inhibitor 1 SLAMSPRQR 
742 Transcription Retinoblastoma-associated protein PYKFPSSPLRIPGZ 

 

Table 1.  The 46 spots that are differentially phosphorylated between mature and 

immature NK cells.  The peptides above the double line have a higher level of 

phosphorylation in the mature NK cells and those below are higher in immature NK cells.  

The amino acid sequence for each peptide is shown.  
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Functional Classification 

 The goal of this study was not only to identify those peptides that are 

differentially phosphorylated between these cell types but also to identify key signaling 

pathways that are utilized differently between these two developmental stages.  In the 

design of the PepChip™ peptide sequences were chosen that corresponded to known or 

predicted phosphorylation sites across the mammalian kinome.  Therefore all sites have a 

predicted protein that the peptide represents, although some overlap may exist between 

proteins with similar amino acid residues.  In order to assure that we have the most 

accurate representation of a specific protein we reconfirmed the identity of each of the 46 

spots that are differentially phosphorylated.  The 9-12 amino acid sequence was entered 

into protein sequence alignment tools.  The protein with the strongest alignment was 

utilized in most instances, taking into account the actual serine, threonine, or tyrosine that 

is being phosphorylated as well as those amino acids immediately adjacent to it.  With 

these proteins we then utilized the human protein reference database (HPRD) to assign a 

biological function for each peptide (Table 1).  We then segregated these functions to the 

immature or mature NK cell based on which cell type had a higher phosphorylation for 

the protein having the given function (Figure 21).  In doing this we were able to 

immediately see that there are dramatic differences that exist within the processes that are 

being undertaken by the cells as identified by these 46 proteins.  In the mature NK cell 

we see that, as would be expected, the largest amount of the function is devoted to 

signaling.  Within this functional category we have included FGFR, JAK3, and FAK1.  

Where in the immature NK cell we see the largest functional category is cell 
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growth/maintenance.  Through looking at the broad functional differences we can see the 

differences in the functions these two cell types utilize to carry out their unique functions.  

 

 

 

Figure 21. Functional pie charts for the peptides differentially phosphorylated 

between mature and immature NK cells.  A) Mature NK cells.  B) Immature NK cells. 

 

Discussion 

 In this study through the use of the PepChip™ we have generated a kinome for 

both the immature and mature NK cell.  We have then compared these kinomes and 

identified 46 peptides that are differentially phosphorylated between these 2 cell types.  

We have then explored the biological function that these 46 proteins are involved in an 

attempt to identify possible signaling differences that exists between these developmental 

stages.   
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 Certain peptides have proven to be extremely interesting and may lend to a better 

understanding of the pathways that are key to these two cell types.  The increased 

phosphorylation of JAK3 in the mature NK cell is a very positive finding.  The need for 

IL-15/2Rβ in NK cell activation is well defined (205).  NK cells specifically express the 

βγ chain of the IL-2/15R.  It has been shown that mice deficient in the γ chain do not 

produce mature NK cells (204, 205).  JAK3 has been shown to associate with the γ chain 

in NK cells.  It has also been shown that mice lacking JAK3 do not produce mature NK 

cells rather their NK cells are stuck in an immature state (206).  This shows the pivotal 

role of JAK3 in NK cells providing a strong proof of concept of this system as JAK3 is 

found to have an overall high level of phosphorylation as well as being significantly more 

phosphorylated in the mature NK cell.     

  

 In the mature NK cell we see that there is the increased phosphorylation of two 

growth factor receptors, FGFR3 and 4.  Between these 2 receptors there is the ability to 

bind approximately 10 of the 22 different FGF (297).  FGFR have been shown to play 

roles from embryonic development to throughout the adult animal.  Within these various 

stages the FGF have been shown to play a role in numerous functions including 

proliferation, differentiation, and migration (297).  Within the current literature there has 

yet to be any description of a role of FGF in immature or mature NK cells.  This therefore 

may represent a novel finding identifying a possible role for FGFR in the regulation of 

NK cells.   
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 The NF-κB pathway has been shown to play a variety of roles in the immune 

system, including NF-κB mice having a decreased immune response (298).  The p50 

precursor, p105 which has an increased phosphorylation in immature NK cells, has been 

shown to have a number of unique roles within the immune system (298).  p105 through 

its association with other signaling molecules has been shown to function in the 

MAP/ERK pathway, specifically upstream of MEK (299).  MEK, as well as the p105 

subunit, have been found in this study to have a higher level of phosphorylation in the 

immature NK cell compared to the mature cell.  This pathway of p105 to MEK and then 

further downstream has been shown to effect numerous different outcomes in immune 

cells including granule release in the NK cell (300).  Although we can not determine 

exactly what outcome would be elicited at this stage it is an extremely positive finding to 

identify two proteins that can function up or downstream of each other in the same 

phosphorylation state.    

  

 Mature NK cells are believed to be in a homeostatic state most of the time in 

terms of there proliferative potential where the immature NK cell would most likely be 

cycling more often in order to effect its maturation and expansion (301).  The increased 

phosphorylation of 14-3-3 fits in with this cycling state of the immature NK cell.  14-3-3, 

which can be up regulated by p53, can regulate the G2/M progression of the cell cycle 

(302, 303).  It does this by sequestering CDC2/cyclin-B complexes in the cytoplasm, thus 

inhibiting the cell from progressing through the remainder of the cell cycle (302, 303).  

This may therefore be a key regulator of the NK cells proliferative state.   
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 Although the function of many of these proteins and/or pathways are well known 

in other cell types their roles within NK cells is relatively undetermined.  This study has  

therefore allowed us to identify some possible pathways that may be functioning within 

NK cells.  It is also important to note that although we have concentrated on the 

substrates that are being phosphorylated in this study it is important to note that this is not 

the only manner in which the kinome chips can be analyzed.  It is also possible to explore 

differential kinase activity rather than differential phosphorylation.  In terms of this 

process we would be able to define or at least make a probably estimation of the kinase 

phosphorylating each peptide.  We could then group the peptides via their kinase and 

determine if certain kinases are more or less active.  This may prove useful in attempting 

to better elucidate pathways as opposed to individual proteins.   

 

 Materials and Methods 

Animals 

 All mice used in this study were C57BL6/J mice of 8-10 weeks of age.  On the 

day of cell isolation the spleen and BM were removed from sufficient animals to obtain a 

minimum of 250,000 pure cells. 

 

Cell Sorting 

 For mature NK cells, spleens were removed and made into a single cell 

suspension.  Whole splenocytes were red blood cell lysed for 5 minutes at room 

temperature in RBC lysis buffer consisting of 0.15µM NH4Cl, 10mM KHCO3, and 

0.1mM EDTA.  Cells were spun down at 300xG for 5 minutes and then resuspended at 
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1x106cells/50µL in staining media.  Staining media consists of PBS with 3% FBS and 

HEPES. Cells were then Fc blocked for 15 minutes on ice with anti-CD16/32 antibody.  

Cells were then stained for sorting with NK1.1+, CD3-, Gr1-, IgM-, and DAPI.  Cells were 

stained for 15 minutes on ice and then washed twice with staining media.  Cells were 

resuspended in staining media with 1% FBS for sorting.  All cell sorting was performed 

on a FACS Aria (Beckton Dickson).  Sorts were performed with a 70µM nozzle at a rate 

of 1000-5000 cells/ second.  All samples were kept at 4°C for the duration of the sort, 

including the sorted cells which were sorted into staining media containing 3% FBS.   

For immature NK cells BM was flushed from femurs of mice and prepared the same as 

spleen cells.  Immature NK cells sorted on the basis of NK1.1+, CD3-, Gr1-, IgM-, Mac1-

/lo.  All sorting was performed on a FACS Aria (Beckton Dickson).       

 

PepChip™ assays 

 For kinome array samples a minimum of 250,000 cells were sorted for each of the 

three cell kinome replicates.  Cells were lysed in cell lysis buffer consisting of 20mM 

Tris-HCl (pH 7.5), 150mM NaCl, 1mM Na2EDTA, 1mM EGTA, 1% Triton X-100, 

2.5mM sodium pyrophosphate, 1mM MgCl2, 1mM -glycerophosphate, 1mM Na3VO4, 

1mM NaF, 1 µg/ml leupeptin (Sigma Aldrich), 1 µg/ml aprotinin (Sigma Aldrich), 1mM 

PMSF.  Volumes of the cell lysates were equalized with diH2O.  The cell lysates were 

then passed through a 0.22-µm low protein binding filter.  10µL of activation buffer was 

then added to the filtered WCL.  Activation mix consists of 50% glycerol, 50µM ATP, 

0.05% v/v Brij-35, 0.25 mg/ml bovine serum albumin, 33P-γ-ATP (1000 kBq).  The 

peptide array mix was then added to the PepChip™, and it was then incubated at 37°C in 



 91  

a humidified stove for 90 minutes.  The peptide array was washed twice with Tris-

buffered saline with 1% Tween-20, then twice in 2M NaCl, and then twice in 

demineralized H2O and finally air-dried. The chips were exposed in a phospho-imaging 

cassette for 72 hours.  After the 72 hours the phospho-imaging cassettes were scanned 

using a Storm Phospho-imager (GE Healthcare). From the Storm imager we obtained 

high-resolution image files that were imported into the Scanalyze software program 

(Lawrence Berkley National Laboratory, CA) for analysis.  To obtain median spot 

density a 28 X 42 grid was overlaid onto the PepChip™ that delineated each individual 

peptide spot.  The Scanalyze program then calculates the median spot density for each 

square within the grid thereby providing a value for the phosphorylation level for each 

peptide.     

 

 After the median spot densities were obtained for each spot on the chip the data 

was normalized across each chip.  Normalization was achieved by correction of the spot 

density for the individual background to diminish inter-array variances thereby 

normalizing the total phosphorylation of the PepChip™ to be equal between all samples.  

This was done by taking the phosphorylation value for an individual spot dividing it by 

the sum of the total phosphorylation of all spots on the chip and then multiplying that by 

the total number of peptides (1176).  In order to be included in the kinome analysis the 

mean phosphorylation between the two replicates on one PepChip™ had to have a 

correlation value of  > +0.85.  In addition any data that was inconsistent (i.e. SEM 

between data points >1.96) were excluded from further analysis.  Both the correlation and 

standard deviation were calculated using Microsoft Excel using the following formulas; 
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Chapter 5 

Discussion 

  

 In these studies we have attempted to better elucidate the signaling mechanisms 

used by the NK cell.  To this end we have utilized a broadly sweeping approach through 

the examination of the kinome of both mature and immature NK cells.  We have also 

examined NK cell signaling within the more specific signaling context of SHIP in the NK 

cell.  Through these methods we have identified possible novel signaling mechanisms 

utilized by the NK cell from the study of the kinome.  In the study of SHIP in the NK cell 

we have been able to take an initial observation of 2B4 overexpression in the SHIP-/- NK 

cell, determine the functional consequence of this receptor overexpression as NK 

hyporesponsiveness and finally determine the molecular mechanism behind this 

hyporesponsiveness as SHP1 over-recruitment.   

 

 The results we have obtained from our study of SHIP in the NK cell have led us 

to form a hypothesis where NK cell based treatments could possibly be developed.  When 

we look at the role of NK cells within the realm of tumor regulation we see that tumor 

cells have developed a number of hurdles in order to circumvent surveillance via the NK 

cell.  Whatever method a tumor utilizes to escape surveillance by an NK cell in the end it 

attempts to tip the balance of activating and inhibitory signals to the inhibitory side.  The 
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key then is to identify a method that will allow an NK cell to overcome these barriers and 

tip the balance back to activation.  One possibility is to utilize a temporary SHIP ablation 

in order to alter the NKR repertoire.  As we have shown in Fig. 5 this could lead to a 

significant down regulation of MHC specific inhibitory receptors.  This would then allow 

the balance of inhibitory and activating signals to be skewed such that the activating 

signals may be able to predominate.  In this study we have utilized a SHIP1 KO mouse in 

order to effect the alteration of NK receptor repertoire.  In a clinical setting we would 

envision the use of a small molecule inhibitor that would be able to block SHIP1.  In 

doing so we would be able to reversibly alter the NK receptor repertoire.   

 

 This has great potential, even in the presence of diminished activating or 

increased inhibitory ligands, due to the fact that with lowered MHC specific inhibitory 

receptors even relatively low amounts of activating ligands would predominate.  A 

concern of this method would be that the loss of inhibitory receptors would allow 

autoreactivity, although this is not the likely outcome.  As has been discussed signaling 

within an NK cell is two part process consisting of both activating and inhibitory signals.  

Therefore the lack of inhibitory signal alone does not elicit cell lysis, an activating signal, 

although possibly a very minute signal, is still needed, therefore normal cells without 

stress inducible ligands present would still be protected. 

  

 The use of SHIP inhibition alone may well not be sufficient to effect the desired 

response.  As our work has shown other inhibitory receptors may be able to compensate 

for the loss of Ly49 expression, in our studies 2B4 has proven very adept at this role.  
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Within the human system it may not be the same situation as in the human 2B4 usually 

functions as an activating receptor.  This is due to the recruitment of SAP to 2B4.  

Although it is important to note that within the human system 2B4 can function as an 

inhibitory receptor, for instance within lymph node derived NK cells.  In addition as we 

have shown in this study the inhibition of SHIP is able to not only alter the NK repertoire 

but it is also able to qualitatively alter the 2B4 receptor complex such that 2B4, even in 

the human, could be locked into a dominant inhibitory role.  There fore within the human 

system either 2B4 or an alternate inhibitory receptor may lock cells into a hypo-

responsive state luckily as has been discussed NK cells utilize very redundant signaling 

pathways, especially to elicit an inhibitory signal.  Therefore we propose that dual or 

tandem inhibition of SHIP1 and SHP1 might be used to temporarily increase NK 

clearance of tumor cells.  The first step would be to inhibit SHIP to create an NK 

compartment that is overly dependent on one or limited number of inhibitory receptors 

that would limit tumor killing.  This could then be followed by treatment with an SHP1 

inhibitor to unleash the killing capacity of the NK compartment against tumor cells. 

Although in this study we used a SHIP-/- NK cells and chemical inhibition of SHP1 

activity, it may be possible to reversibly inhibit SHIP and SHP1 using RNA interference 

and/or chemical inhibitors.  Through this it may be possible to reversibly inhibit both of 

these proteins thereby unleashing the strong cytotoxic potential of the NK cell on 

transformed cells.   
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Appendix A 

 

Table A-1.  NK kinome.  The total kinome for both mature NK (NK) and immature NK 

(iNK) with all 6 replicates present.  Values have been normalized.   

 

Spot SEQUENCE NK1 NK2 NK3 NK4 NK5 NK6 iNK1 iNK2 iNK3 iNK4 iNK5 iNK6 
1 HEYIYVDPM 1.35 0.50 0.76 0.50 1.14 0.70 0.64 0.59 0.53 0.73 0.71 0.86 
2 KRPSVRAKA 2.95 1.57 2.50 2.19 1.86 0.86 1.47 1.50 1.49 1.66 1.70 1.18 
3 EDNEYTARQ 1.68 0.49 1.14 0.39 1.58 0.35 0.61 0.42 0.78 0.53 1.15 0.47 
4 ENKLYGMSD 0.71 0.38 0.53 0.24 1.05 0.36 0.45 0.35 0.35 0.36 0.81 0.44 
5 HRLLTLDPV 0.64 0.29 0.44 0.22 1.23 0.26 0.63 0.32 0.56 0.44 0.61 0.66 
6 LEKKYVRRD 0.67 0.34 0.36 0.29 1.13 0.45 0.61 0.27 0.55 0.45 0.46 0.35 
7 PYKFPSSPLRIPGZ 0.62 0.27 0.37 0.38 1.35 0.36 0.56 0.41 0.43 0.37 0.44 0.26 
8 GKRQTEREK 1.33 0.58 0.37 0.41 0.95 0.64 0.90 0.56 0.61 0.72 0.60 0.60 
9 APATSPKAE 0.92 0.24 0.54 0.28 1.36 0.38 0.60 0.34 0.29 0.34 0.64 0.55 

10 DEEESEQGA 1.63 0.33 0.99 0.27 1.33 0.44 0.59 0.37 0.90 0.45 0.69 0.53 
11 FFRRSKIAV 1.09 0.47 0.70 0.38 1.38 0.45 0.71 0.61 0.71 0.73 0.74 0.46 
12 GMTEYVATR 0.81 0.38 0.47 0.23 0.96 0.25 0.69 0.35 0.43 0.43 0.50 0.45 
13 EAALYKNLL 0.66 0.36 0.55 0.17 1.02 0.44 0.49 0.40 0.46 0.50 0.47 0.33 
14 ELILSPRSK 1.18 0.42 0.67 0.51 1.17 0.37 0.82 0.70 0.81 1.09 0.63 0.40 
15 RRAVSEQDA 0.63 0.24 0.45 0.23 0.73 0.30 0.58 0.22 0.23 0.32 0.31 0.46 
16 SEDNSEDEI 1.78 0.51 1.18 0.34 1.12 0.33 0.73 0.38 0.52 0.64 0.81 0.47 
17 PASLSRAKA 1.60 0.79 0.70 0.50 1.17 0.54 0.87 0.80 0.73 0.80 0.94 0.84 
18 RRASL 2.51 1.26 1.84 1.09 1.99 0.57 1.43 1.43 1.19 1.27 2.72 0.65 
19 AKKMSTYNV 1.33 0.81 1.01 0.94 1.13 0.56 0.96 0.87 1.39 1.26 0.78 0.72 
20 DDINSYEAW 1.71 0.61 1.17 0.63 1.57 0.35 0.55 0.66 1.61 0.90 1.05 0.56 
21 ETRFTDTRK 1.26 0.48 0.81 0.56 1.35 0.46 0.92 0.65 0.94 1.01 0.86 0.43 
22 QLSTSEENS 0.70 0.27 0.39 0.36 0.48 0.34 0.59 0.32 0.39 0.40 0.41 0.40 
23 SPRKSPKKS 2.15 1.30 1.25 1.02 0.88 0.76 1.35 1.81 1.10 1.20 0.98 0.95 
24 RRKASGP 1.69 1.00 0.99 0.89 0.92 0.64 1.18 1.01 1.12 0.97 0.97 0.83 
25 RQLRSPRRT 2.57 1.27 1.93 1.95 2.42 1.08 1.55 1.65 2.34 1.61 2.97 1.22 
26 SAVASNMRD 0.89 0.43 0.46 0.41 0.84 0.36 0.60 0.47 0.49 0.38 0.64 0.33 
27 RTPPPSG 1.13 0.54 0.49 0.37 0.81 0.34 0.76 0.46 0.47 0.60 0.56 0.36 
28 LRRAS 1.51 0.73 1.10 0.93 1.31 0.60 1.00 0.76 0.83 1.07 1.17 0.57 
29 SSTGSIDMV 0.92 0.34 0.71 0.37 0.45 0.27 0.63 0.33 0.37 0.43 0.26 0.43 
30 TLASSFKRR 3.62 2.66 2.95 2.41 0.99 1.00 1.75 1.84 1.58 1.75 1.44 1.04 
31 VGAFSTVKG 0.99 0.79 0.80 0.65 0.54 0.40 0.76 0.70 0.72 0.99 0.68 0.52 
32 YSGHSMSDP 0.59 0.30 0.52 0.30 0.53 0.38 0.63 0.35 0.55 0.41 0.48 0.39 
33 SPGEYVNIE 0.92 0.39 0.74 0.30 0.78 0.30 0.74 0.34 0.60 0.59 0.44 0.40 
34 RKRSAKE 1.34 0.88 1.07 0.89 1.18 1.02 1.04 1.37 1.43 1.20 1.10 0.89 
35 VINETSQHH 0.65 0.42 0.54 0.33 0.63 0.41 0.64 0.33 0.43 0.48 0.63 0.30 
36 SPVVSGDTS 0.61 0.34 0.57 0.35 0.51 0.33 0.63 0.25 0.86 0.27 0.33 0.53 
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37 LRRFSLATM 2.36 1.66 1.94 1.29 1.18 0.79 1.21 1.27 0.98 1.15 1.14 1.04 
38 PRPASVPPS 0.87 0.51 0.55 0.44 0.57 0.59 0.72 0.48 0.64 0.77 0.45 0.54 
39 SSRPSSNRS 2.15 1.05 1.30 1.08 1.36 1.11 1.18 0.96 0.89 1.06 1.38 1.17 
40 TKFASDDEH 0.72 0.34 0.62 0.31 0.64 0.28 0.66 0.35 0.59 0.40 0.47 0.47 
41 LSDDSFIED 1.66 0.71 1.59 0.95 1.03 0.38 0.93 0.64 0.80 0.96 0.91 0.71 
42 PSPKTPPGS 0.73 0.41 0.80 0.44 0.74 0.40 0.60 0.43 0.60 0.37 0.94 0.28 
43 KDIGSESTE 1.36 0.39 0.99 0.35 0.57 0.47 0.71 0.41 0.59 0.49 0.47 0.57 
44 KRRGSVPIL 2.42 1.86 1.94 1.79 1.44 1.66 1.42 1.62 2.17 1.88 1.45 1.67 
45 KRAKAKTAKKR 2.50 2.54 2.75 2.80 2.07 2.45 2.81 3.37 3.69 2.91 2.24 2.02 
46 QSYSSSQRV 0.77 1.05 0.62 0.53 0.61 0.47 0.88 0.72 0.63 0.58 0.71 0.57 
47 KGTGYIKTE 1.31 0.89 0.63 0.68 0.97 1.14 0.93 0.75 0.83 0.13 0.92 1.00 
48 KRSLSEMEI 0.65 0.31 0.53 0.42 0.81 0.44 0.60 0.35 0.50 0.37 0.55 0.48 
49 KRKQGSVRGL 2.71 1.63 2.16 1.88 1.61 1.05 1.44 1.59 1.83 2.03 1.07 0.93 
50 HTRDSEAQR 0.64 0.33 0.39 0.29 1.39 0.31 0.54 0.61 0.54 0.29 0.48 0.22 
51 MAEVSWKVL 0.45 0.32 0.46 0.25 1.19 0.33 0.53 0.63 0.50 0.39 0.56 0.25 
52 EEGISQESS 0.61 0.41 0.40 0.21 1.05 0.51 0.60 0.42 0.65 0.35 0.58 0.21 
53 EQQQTEDEL 0.78 0.31 0.55 0.31 0.80 0.37 0.53 0.27 0.90 0.32 0.54 0.27 
54 IGEGTYGVV 0.87 0.34 0.72 0.39 0.82 0.28 0.65 0.47 0.84 0.44 0.63 0.29 
55 MMTPYVVTR 0.96 0.28 0.70 0.31 1.08 0.26 0.82 0.54 0.74 0.62 0.78 0.29 
56 PYKFPSSPLRIPGZ 0.53 0.17 0.60 0.16 1.12 0.26 0.64 0.53 0.55 0.18 0.78 0.28 
57 GQEVYVKKT 0.96 0.40 0.53 0.41 0.95 0.27 0.77 1.12 0.74 0.75 0.41 0.28 
58 AQETSGEEI 0.65 0.39 0.72 0.31 1.07 0.38 0.42 0.55 0.80 0.40 0.46 0.26 
59 DKAKSRPSL 1.20 0.58 0.65 0.56 0.91 0.40 0.96 0.65 0.78 0.81 0.44 0.31 
60 FPVSYSSSG 0.60 0.28 0.51 0.32 0.75 0.47 0.56 0.42 0.41 0.33 0.39 0.24 
61 GRLSSMAMI 1.07 0.39 0.83 0.52 0.74 0.23 0.87 0.50 0.87 0.81 0.42 0.51 
62 EEDLSDENI 0.81 0.22 0.99 0.45 1.17 0.36 0.58 0.33 0.78 0.44 0.58 0.33 
63 EPGPYAQPS 0.47 0.16 0.72 0.33 0.90 0.30 0.57 0.32 0.70 0.39 0.72 0.31 
64 RRRASQLKV 1.26 0.58 0.76 0.51 0.88 0.34 0.59 0.71 0.78 0.83 0.50 0.21 
65 SGADYPDEL 1.74 0.66 2.51 0.72 0.93 0.39 0.63 0.60 1.03 1.08 0.61 0.29 
66 KQISVR 1.63 1.28 1.51 1.12 0.93 0.44 1.28 1.11 1.72 1.38 0.64 0.43 
67 SLKDH 0.62 0.35 0.58 0.34 0.71 0.33 0.61 0.39 0.57 0.44 0.26 0.21 
68 APRTAGGRR 2.29 0.98 1.60 1.17 1.70 0.42 1.66 1.53 1.98 1.54 1.01 0.71 
69 DGHEYIYVD 0.89 0.35 1.10 0.65 0.72 0.29 0.72 0.39 0.84 0.52 0.49 0.29 
70 FKRSYEEHI 0.58 0.39 0.59 0.39 0.73 0.27 0.68 0.29 0.61 0.48 0.48 0.28 
71 REARSRAST 1.87 0.95 1.06 0.82 0.97 0.60 1.20 0.97 1.07 1.01 0.65 0.74 
72 DRVYVHPF 0.74 0.39 1.02 0.36 0.80 0.43 0.80 0.51 0.71 0.65 0.53 0.22 
73 VRRSDAA 0.79 0.38 0.69 0.35 0.63 0.33 0.88 0.53 0.43 0.38 0.49 0.26 
74 RRKMSRGLP 1.29 0.78 0.94 0.73 0.61 0.24 1.09 0.83 1.31 1.32 0.44 0.31 
75 SEVPYREVQ 0.72 0.33 0.89 0.54 0.44 0.23 0.68 0.53 0.97 0.65 0.33 0.32 
76 PRRASATSS 1.17 0.52 0.98 0.67 0.71 0.32 0.89 0.65 0.91 0.94 0.53 0.49 
77 RRLSI 2.25 0.84 2.79 1.48 0.93 0.18 1.93 1.23 1.60 1.48 0.78 0.61 
78 STSLSPFYL 0.79 0.39 0.63 0.44 0.63 0.54 0.73 0.49 0.56 0.57 0.49 0.32 
79 TRDIYETDY 2.01 0.90 1.64 1.35 1.21 0.54 0.82 0.66 0.90 0.96 0.79 0.26 
80 VPTLSTFRT 1.22 0.69 0.74 0.70 0.65 0.35 0.97 0.81 0.67 0.83 0.70 0.31 
81 RASTSKSES 0.64 0.35 0.53 0.35 0.52 0.35 0.56 0.54 0.53 0.63 0.53 0.37 
82 SPSSSPTHE 0.52 0.31 0.50 0.43 0.39 0.26 0.55 0.54 0.49 0.38 0.19 0.37 
83 STNDSLL 0.69 0.31 1.05 0.50 0.64 0.35 0.65 0.47 0.80 0.70 0.48 0.35 
84 VRTFTHEVV 0.64 0.25 0.74 0.47 0.63 0.24 0.74 0.62 2.13 0.87 0.54 0.40 
85 SRKMSVQEY 0.83 0.48 0.53 0.49 0.55 0.61 0.77 0.54 0.52 0.54 0.91 0.37 
86 LSGLSFKRN 2.23 1.37 2.17 2.12 0.70 0.64 1.09 1.61 1.34 1.60 0.56 0.33 
87 PTGTTPQRK 0.63 0.54 0.64 0.55 0.78 0.38 0.57 0.52 0.53 0.50 0.40 0.37 
88 STLASSFKR 2.55 1.49 2.31 1.79 0.62 0.42 1.50 1.47 1.36 1.40 0.53 0.45 
89 TPPKSPSSA 0.46 0.35 0.64 0.74 0.35 0.25 0.62 0.40 0.55 0.49 0.23 0.38 
90 PAAVSEHGD 0.56 0.31 0.80 1.19 0.42 0.35 0.57 0.34 0.60 0.49 0.37 0.35 
91 PVSPSLVQG 0.55 0.21 0.82 0.42 0.40 0.26 0.58 0.53 0.76 0.54 0.53 0.41 
92 KKDASDDLD 0.68 0.41 0.74 0.44 0.78 0.48 0.71 0.48 0.74 0.45 0.89 0.42 
93 KSRPSLPLP 1.24 0.97 0.91 0.87 0.77 0.71 1.18 0.86 1.01 1.17 0.50 0.46 
94 LSVSSLPGL 0.48 0.42 0.72 0.42 0.74 0.33 0.54 0.49 1.19 0.52 0.28 0.43 
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95 SRHSSPHQS 0.76 0.46 0.68 0.53 0.41 0.38 0.85 0.67 0.77 0.61 0.33 0.71 
96 KKPPTPPPE 0.54 0.40 0.67 0.50 0.50 0.53 0.70 0.62 0.74 0.84 0.37 0.58 
97 KVPQTPLHT 1.06 0.67 1.06 0.99 1.12 0.33 0.86 0.96 1.12 1.17 0.58 0.61 
98 PRRSSIRNA 0.77 0.30 1.03 0.48 0.53 0.36 0.69 0.52 0.76 0.79 0.52 0.43 
99 ILDTTGQEE 0.86 0.26 1.56 0.57 1.52 0.31 0.84 0.54 1.09 0.77 1.16 0.43 
100 NDSNYIVKG 0.51 0.18 0.76 0.59 1.09 0.15 0.56 0.44 0.69 0.36 0.76 0.40 
101 EFLRTSAGS 0.42 0.19 0.69 0.30 0.78 0.19 0.51 0.48 0.39 0.22 0.77 0.32 
102 ERTNSLPPV 0.38 0.16 0.61 0.37 0.61 0.24 0.59 0.30 0.58 0.13 0.64 0.33 
103 IRRASTIEM 0.95 0.18 1.55 0.85 1.24 0.20 1.21 0.61 0.74 0.35 0.99 0.39 
104 NFDDYMKSL 0.63 0.28 1.00 0.85 0.90 0.17 0.82 0.44 1.04 0.37 0.73 0.42 
105 PYKFPSSPLRIPGZ 0.58 0.23 0.67 0.70 1.11 0.06 0.65 0.37 0.79 0.24 0.57 0.38 
106 GRTGRRNSI 3.52 1.32 3.52 2.39 5.56 0.60 3.43 2.73 2.88 2.45 5.50 1.21 
107 ATPIYLDIL 0.97 0.31 1.26 0.73 1.34 0.27 0.89 0.51 0.69 0.60 1.20 0.54 
108 DMRQTVAVG 0.45 0.23 0.76 0.38 0.69 0.23 0.61 0.43 0.53 0.21 1.14 0.35 
109 GDRFTDEEV 1.35 0.41 1.84 1.07 1.10 0.23 0.83 0.57 1.28 1.05 1.22 0.40 
110 GSGSSVTSR 0.84 0.19 0.86 0.86 1.06 0.34 1.01 0.73 0.80 0.46 1.39 0.49 
111 EEPQYEEIP 1.79 0.39 1.93 1.29 1.80 0.17 0.92 0.73 1.06 0.88 1.54 0.42 
112 ERRLSLVPD 1.02 0.23 1.09 0.85 1.16 0.19 0.80 0.42 0.85 0.31 0.69 0.33 
113 RRSSSRPIR 2.60 0.93 2.38 1.44 3.99 0.68 2.30 2.12 2.00 1.55 4.75 1.51 
114 SKIGSTENL 0.56 0.21 0.57 0.34 0.70 0.30 0.76 0.51 0.49 0.31 0.83 0.47 
115 NDMTSL 0.49 0.15 0.92 0.26 0.38 0.21 0.63 0.25 0.61 0.24 0.93 0.35 
116 AARLSLTDP 0.40 0.21 0.64 0.50 0.37 0.24 0.68 0.26 0.49 0.37 0.74 0.36 
117 ARRSTTDAG 0.43 0.15 0.54 0.45 0.37 0.28 0.67 0.37 0.59 0.32 1.05 0.38 
118 DLKDTKYKL 0.47 0.16 0.56 0.66 0.53 0.24 0.66 0.26 0.60 0.41 0.83 0.48 
119 GAFSTVKGV 0.97 0.46 0.91 0.81 0.81 0.30 1.08 0.81 0.97 0.48 0.78 0.54 
120 RGRASSHSS 1.64 0.69 1.26 0.83 1.92 0.84 1.31 1.31 1.02 1.03 2.13 1.01 
121 RKRSRAEF 1.31 0.47 1.00 0.56 0.66 0.46 1.14 0.90 0.95 0.84 1.32 0.69 
122 LRAASLG 1.04 0.42 1.18 0.45 0.85 0.22 1.08 0.82 0.84 0.85 1.16 0.56 
123 RRRQSVLNL 1.33 0.58 1.83 0.80 1.63 0.49 1.63 1.64 1.27 0.94 1.67 0.92 
124 SIDEYFSEQ 1.09 0.35 1.22 0.74 0.59 0.30 0.78 0.50 0.92 0.61 0.96 0.41 
125 EESESD 0.85 0.22 1.50 0.85 0.99 0.27 0.80 0.54 1.10 0.69 0.81 0.50 
126 RRRS 2.14 0.92 2.13 1.75 2.93 1.12 2.32 2.56 2.49 1.59 2.83 1.87 
127 TAYGTRRHL 2.71 1.44 3.04 1.65 3.10 0.52 2.30 2.01 1.98 1.92 2.91 1.05 
128 TRRISQTSQ 1.50 0.87 1.80 0.92 1.51 0.53 1.36 0.94 1.04 1.07 1.71 0.82 
129 VTPRTPPPS 0.57 0.31 0.75 0.25 0.65 0.26 0.92 0.49 0.53 0.39 0.80 0.45 
130 REVSSLKSK 0.94 0.45 1.26 0.59 0.98 0.37 1.12 0.89 0.92 0.98 0.98 0.78 
131 PEETQTQD 0.75 0.23 1.17 0.54 0.72 0.22 0.65 0.43 0.77 0.49 0.63 0.43 
132 KKQISVR 1.21 0.57 1.37 0.88 2.50 1.00 1.18 0.84 1.45 1.09 1.77 1.31 
133 WLTKSPDGN 0.61 0.20 0.73 0.52 1.02 0.34 0.70 0.50 0.72 0.46 0.60 0.48 
134 SRRSSLGSL 2.33 1.37 3.06 1.73 3.01 0.80 1.37 1.41 1.51 1.76 2.77 1.31 
135 PETVYEVAG 1.60 0.67 2.31 1.30 1.55 0.33 0.88 0.67 1.01 1.02 1.44 0.62 
136 QEPGSGPPE 0.44 0.19 0.93 0.33 0.51 0.27 0.58 0.33 0.50 0.35 0.53 0.47 
137 SVSSSPIKE 0.42 0.34 0.87 0.42 0.55 0.29 0.61 0.47 0.46 0.43 0.80 0.51 
138 TRLHSLRER 2.64 1.69 3.62 1.74 1.96 0.54 1.59 1.59 1.71 1.48 1.74 1.09 
139 PKEVYDVML 0.59 0.23 1.02 0.48 0.94 0.33 0.67 0.47 0.94 0.69 0.52 0.49 
140 PRTPGGRR 2.09 1.05 2.40 1.80 2.79 1.11 1.40 1.48 2.93 1.88 2.41 2.10 
141 KLSPSPSSR 1.18 0.59 1.10 0.89 1.61 1.09 1.14 0.94 1.14 1.10 1.72 1.25 
142 LEKKYVRRD 1.55 0.78 1.51 1.00 0.98 0.74 1.20 1.03 1.74 1.17 0.91 0.90 
143 QASSTPLSP 0.58 0.13 1.20 0.38 0.55 0.32 0.61 0.27 0.86 0.35 0.71 0.53 
144 SRRDSLFVP 0.90 0.28 1.66 0.74 0.73 0.34 0.76 0.53 0.98 0.60 0.72 0.55 
145 KQPIYIVME 0.67 0.37 1.22 0.59 0.97 0.32 0.88 0.52 0.74 0.83 0.80 0.60 
146 LLQDSVDFS 0.64 0.18 1.14 0.44 2.01 0.40 0.70 0.46 0.93 0.67 1.21 0.77 
147 QLSTSEENS 0.47 0.10 0.91 0.56 0.94 0.31 0.63 0.54 0.83 0.53 0.84 0.49 
148 KIQASFRGH 2.63 1.04 3.07 2.57 4.11 1.13 1.90 1.56 2.45 2.51 2.43 1.36 
149 NKGASQAGM 1.16 0.40 0.72 0.72 1.76 0.39 0.95 0.66 0.69 0.37 1.01 0.56 
150 EIVESLSSS 0.60 0.24 0.69 0.88 1.11 0.17 0.69 0.35 0.69 0.19 0.54 0.34 
151 ESSNYMAPY 0.58 0.21 0.62 0.90 1.11 0.33 0.71 0.51 0.83 0.31 0.49 0.36 
152 KRPSKRAKA 1.40 0.60 1.17 1.40 2.16 0.60 1.41 1.42 1.33 0.70 0.93 0.65 
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153 NRAITARRQ 1.94 0.64 1.01 1.45 2.67 0.43 1.62 1.50 1.30 0.84 1.63 0.84 
154 PYKFPSSPLRIPGZ 0.40 0.12 0.45 1.09 0.60 0.20 0.68 0.69 0.63 0.27 0.30 0.34 
155 GSRPSESNG 0.79 0.33 0.62 0.53 1.81 0.19 0.72 0.44 0.71 0.27 0.50 0.49 
156 DAHKSKRQH 1.07 0.31 0.85 0.69 1.45 0.17 0.88 0.72 1.05 0.52 0.96 0.48 
157 DSLIYDDGL 1.56 0.49 2.07 1.65 1.84 0.26 0.71 0.60 1.02 0.73 1.12 0.57 
158 GGRDSRSGS 0.90 0.24 0.76 0.74 1.08 0.22 0.85 0.84 0.76 0.20 0.56 0.42 
159 GVERSVRPT 1.00 0.42 0.63 0.84 0.90 0.21 1.01 1.00 0.91 0.31 0.62 0.59 
160 EGVKSDQAE 0.42 0.21 0.56 0.89 0.61 0.15 0.65 0.65 0.69 0.11 0.32 0.39 
161 ESLSSSEES 0.43 0.17 0.63 1.44 0.59 0.20 0.72 0.68 0.76 0.13 0.24 0.34 
162 RVRMSADAM 0.60 0.12 0.56 0.44 0.95 0.18 0.68 0.39 0.57 0.30 0.89 0.45 
163 SNPTYSVMR 2.29 0.69 1.61 1.11 2.29 0.39 1.37 1.35 1.03 0.77 2.10 1.19 
164 SSKRAK 1.32 0.52 1.16 1.22 2.33 0.49 1.33 1.33 1.45 0.77 1.07 0.64 
165 AGDGSDEEV 0.75 0.20 1.17 1.04 0.84 0.13 0.81 0.76 0.98 0.53 0.66 0.47 
166 AVDRYIAIT 0.62 0.39 0.64 1.02 0.62 0.13 0.73 0.59 0.68 0.22 0.49 0.37 
167 DPLLTYRFP 0.35 0.15 0.66 1.22 0.75 0.24 0.61 0.77 0.70 0.21 0.45 0.37 
168 GENIYIRHS 0.68 0.31 0.95 1.65 0.78 0.29 1.02 1.29 0.95 0.44 0.58 0.27 
169 RLSPSPTSQ 0.66 0.18 0.63 0.36 0.73 0.22 0.76 0.66 0.54 0.31 0.93 0.39 
170 RKESYSV 0.91 0.36 0.76 0.53 1.01 0.22 0.97 0.81 0.65 0.42 0.90 0.48 
171 PLSRTLS 0.81 0.31 0.78 0.63 0.83 0.19 0.72 0.57 0.79 0.41 0.56 0.33 
172 RSRASTPPA 0.95 0.48 0.92 0.71 0.92 0.34 0.98 1.09 0.80 0.39 0.68 0.50 
173 SLSSSEESI 0.75 0.22 1.31 1.41 0.84 0.23 1.00 0.86 1.09 0.49 0.54 0.36 
174 LRRASLAG 1.26 0.79 1.60 1.81 1.51 0.69 1.39 1.71 1.00 0.56 1.32 1.00 
175 ADSESEDEE 0.94 0.14 1.97 3.12 1.45 0.27 1.11 1.38 1.10 0.55 0.93 0.37 
176 THERSPSPS 0.71 0.20 0.80 0.43 0.92 0.25 0.72 0.48 0.65 0.39 0.72 0.43 
177 TVTRSYRSV 2.69 1.22 3.38 2.00 3.86 0.65 2.33 2.00 1.98 1.50 2.60 1.73 
178 YETDYYRKG 1.17 0.49 1.28 1.02 1.34 0.19 1.07 1.07 0.88 0.59 0.87 0.61 
179 RKQISVRGL 1.47 0.66 1.44 1.23 1.65 0.65 1.34 1.56 1.19 0.82 1.26 0.91 
180 AGTTYAL 0.60 0.37 0.55 0.78 0.76 0.21 0.72 0.64 0.58 0.35 0.51 0.45 
181 LRRASVA 1.25 0.66 1.21 1.34 1.64 0.47 1.25 1.50 0.91 0.60 0.99 0.74 
182 YRGYSLGNW 0.39 0.24 0.52 0.92 0.51 0.30 0.71 0.70 0.68 0.38 0.36 0.31 
183 SSLKSRKRA 2.02 0.68 2.28 1.70 1.71 0.94 1.50 1.69 2.90 1.71 1.50 1.19 
184 PMRRSVSEA 0.63 0.35 0.81 0.51 1.10 0.37 0.70 0.66 0.60 0.54 0.96 0.44 
185 RSKRSGSV 2.67 1.17 3.20 2.12 3.66 0.95 1.93 1.97 2.88 1.77 2.49 1.70 
186 TEGQYQQQP 0.73 0.38 0.63 0.58 1.17 0.26 0.80 0.67 0.81 0.50 0.52 0.53 
187 TTPLSPTRL 0.87 0.54 0.80 0.81 1.75 0.50 0.97 1.03 0.93 0.63 0.94 0.88 
188 PQPEYVNQP 0.55 0.28 0.72 0.92 0.75 0.34 0.68 0.73 0.98 0.37 0.48 0.45 
189 VKRGISGL 1.16 0.61 1.01 1.45 1.57 0.86 1.22 1.57 1.12 0.64 1.12 1.02 
190 KRKQISVRG 1.69 0.65 2.52 1.81 2.05 1.45 1.55 1.68 3.15 1.87 2.30 1.77 
191 LPVPSTHIG 0.72 0.34 0.83 0.53 0.98 0.28 0.81 0.76 0.79 0.84 1.39 0.52 
192 QRRHSLEPP 0.73 0.36 0.80 0.62 1.23 0.23 0.83 0.87 1.00 0.82 0.97 0.51 
193 SRTLSVSSL 0.77 0.34 0.74 0.59 1.58 0.21 0.85 0.69 0.71 0.61 0.86 0.62 
194 KRPSERAKA 1.52 1.03 1.40 1.27 2.58 1.14 1.23 1.59 1.76 1.32 1.86 1.49 
195 LRGRSFMNN 1.12 0.68 1.62 1.58 1.84 0.65 1.06 1.41 1.13 0.98 1.12 0.95 
196 QRVSSYRRT 2.84 1.75 2.95 3.33 4.16 1.77 2.38 2.72 2.03 1.48 3.10 2.25 
197 HDLSSEMFN 1.18 0.22 0.49 0.25 0.38 0.39 0.60 0.29 0.46 0.32 0.69 0.64 
198 KRPSRRAKA 2.40 1.91 1.99 1.53 1.55 2.43 1.63 1.78 1.88 1.71 2.56 2.17 
199 EDNEYTARP 3.33 2.01 2.43 1.35 1.22 0.52 1.14 0.92 1.14 1.74 1.19 0.56 
200 ENAPSSTSS 0.73 0.33 0.68 0.45 0.48 0.27 0.60 0.30 0.37 0.46 0.39 0.38 
201 HMRSSMSGL 1.29 0.96 0.65 0.62 0.80 0.81 1.17 0.85 0.71 1.08 0.76 0.98 
202 LDRSSHAQR 0.80 0.38 0.50 0.43 0.72 0.39 0.66 0.24 0.43 0.41 0.55 0.50 
203 PYKFPSSPLRIPGZ 0.55 0.33 0.43 0.33 0.77 0.40 0.64 0.23 0.38 0.35 0.44 0.33 
204 GKEIYNTIR 0.61 0.27 0.50 0.37 0.54 0.35 0.61 0.35 0.44 0.33 0.68 0.83 
205 APATPGGRR 2.30 1.72 1.29 0.94 1.46 1.74 1.31 1.58 1.53 1.42 2.36 1.52 
206 DEEESEEAK 1.04 0.55 0.90 0.52 0.65 0.43 0.68 0.34 0.64 0.61 0.65 0.48 
207 FFKKSKIST 1.60 1.28 1.41 1.30 0.71 0.61 1.34 1.37 1.49 1.26 0.64 0.58 
208 GMGTSVERA 0.74 0.40 0.59 0.58 0.64 0.33 0.67 0.28 0.61 0.59 0.48 0.50 
209 DYDSSDIED 3.01 1.96 2.53 2.33 2.04 0.61 1.23 0.98 1.53 2.14 1.60 1.11 
210 EKRASGQAF 0.69 0.46 0.57 0.59 0.64 0.47 0.74 0.44 0.48 0.57 0.60 0.44 
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211 RRAVSELDA 0.52 0.31 0.38 0.36 0.66 0.30 0.62 0.33 0.38 0.30 0.43 0.43 
212 SDGGYMDMS 0.85 0.50 0.51 0.32 0.68 0.39 0.62 0.57 0.50 0.38 0.70 0.48 
213 NWHMTPPRK 1.08 0.91 0.67 0.51 0.96 1.21 0.98 0.80 0.77 0.67 1.25 1.06 
214 RRASI 2.79 1.87 2.06 1.57 1.85 2.11 1.66 1.33 1.62 1.34 2.95 1.70 
215 AKKGSEQES 0.61 0.44 0.48 0.41 0.61 0.47 0.57 0.43 0.65 0.35 0.59 0.51 
216 DDEMTGYVA 0.94 0.58 0.76 0.69 0.98 0.37 0.62 0.51 0.73 0.60 0.69 0.67 
217 ETDYYRKGG 0.73 0.46 0.67 0.63 0.70 0.31 0.64 0.64 0.70 0.52 0.46 0.46 
218 YVTTSTRTY 1.32 0.90 0.68 0.44 0.70 0.63 1.02 0.99 0.56 0.76 0.99 0.81 
219 SPQPSRRGS 2.88 2.20 1.34 1.05 1.97 1.92 1.37 1.72 1.36 1.47 2.65 1.86 
220 RRAASVA 2.31 1.55 1.12 0.85 1.15 1.53 1.21 1.23 0.91 1.06 1.68 1.07 
221 RPSESNGQP 0.82 0.42 0.44 0.36 0.37 0.30 0.55 0.29 0.40 0.25 0.38 0.35 
222 SASTTPVKK 1.14 0.85 0.69 0.61 0.76 1.01 0.85 0.79 0.68 0.81 0.79 1.09 
223 NSYGSRRGN 2.99 2.54 1.66 2.07 2.99 2.43 1.73 1.71 1.37 1.55 2.21 3.20 
224 LRRASL 1.38 1.27 1.19 1.44 1.17 0.80 0.80 0.83 0.76 1.16 0.89 0.90 
225 SSTDSADSG 0.73 0.41 0.62 0.30 0.38 0.33 0.60 0.38 0.41 0.32 0.40 0.43 
226 TKSGSTTKN 1.26 1.12 0.76 0.94 0.84 0.84 0.97 0.91 1.13 0.88 1.10 0.82 
227 VETTYADFI 0.88 0.65 0.74 0.45 0.90 0.48 0.67 0.35 0.53 0.40 0.66 0.50 
228 YSFTTTAER 0.66 0.46 0.37 0.27 0.61 0.38 0.60 0.35 1.19 0.23 0.43 0.45 
229 SPFKYQSLL 0.61 0.47 0.50 0.37 0.62 0.45 0.47 0.39 0.63 0.43 0.38 0.47 
230 RKRSAAE 1.10 0.99 0.59 0.72 1.05 0.77 0.75 0.87 0.69 0.93 0.74 0.91 
231 VIKRSPRKR 1.93 1.74 2.02 2.04 2.63 2.72 1.70 2.69 2.42 2.41 2.04 2.49 
232 SPVKSPEAK 0.65 0.42 0.55 0.42 0.54 0.41 0.50 0.36 0.46 0.50 0.54 0.57 
233 LRRASVAQL 2.45 2.32 2.41 1.77 1.84 1.23 1.32 1.33 1.11 1.66 1.58 1.38 
234 PRMPSLSVP 0.65 0.45 0.53 0.34 0.58 0.44 0.62 0.27 0.32 0.40 0.37 0.36 
235 SSPVYQDAV 0.88 0.63 0.73 0.82 0.93 0.48 0.70 0.45 0.72 0.50 0.66 0.47 
236 TKDTYDALH 0.70 0.47 0.52 0.49 0.66 0.35 0.50 0.41 0.63 0.44 0.47 0.47 
237 LRSPSWEPF 0.73 0.65 0.64 0.61 0.80 0.41 0.44 0.39 0.51 0.59 0.69 0.52 
238 PSLPTPPTR 1.17 1.00 0.72 0.79 1.10 0.82 0.78 0.66 0.83 1.01 1.29 1.01 
239 KASASPRRK 2.18 1.97 2.06 1.94 2.70 2.01 1.20 1.78 1.89 2.28 2.55 2.26 
240 KRRDYLDLA 0.84 0.57 0.85 0.53 0.89 0.48 0.62 0.42 0.55 0.50 0.57 0.83 
241 PAPAVRASDRA 0.77 0.42 0.57 0.29 0.73 0.35 0.48 0.35 0.54 0.35 0.47 0.42 
242 QSRASDKQT 0.55 0.45 0.50 0.32 0.67 0.48 0.59 0.31 0.42 0.37 0.62 0.56 
243 KGQESFKKQ 1.29 1.29 0.96 1.20 1.40 1.52 1.36 1.22 0.98 1.22 1.62 1.39 
244 KRSGSVYEP 1.63 2.28 1.74 2.22 1.31 1.32 1.19 1.65 1.20 1.76 1.66 1.99 
245 KRAQISVRGL 1.70 1.75 1.83 2.14 2.01 2.04 1.39 1.78 1.76 1.77 2.31 2.07 
246 HSSQSQGGG 0.61 0.29 0.38 0.38 0.59 0.33 0.77 0.41 0.47 0.33 0.54 0.37 
247 MAEAYSEIG 1.13 0.65 1.14 0.93 1.16 0.44 0.77 0.45 0.97 1.02 1.02 0.50 
248 EEESSYSYE 3.49 2.49 2.78 3.10 3.32 0.79 1.19 0.94 1.68 2.71 2.06 1.43 
249 EQPGSDDED 1.00 0.59 1.54 1.02 0.67 0.40 0.72 0.62 1.15 1.04 0.63 0.39 
250 IEQFSTVKG 0.39 0.26 0.68 0.76 0.46 0.37 0.60 0.41 0.46 0.46 0.42 0.34 
251 MLDHSESTK 0.40 0.26 0.63 0.46 0.47 0.42 0.57 0.47 0.44 0.43 0.68 0.44 
252 PYKFPSSPLRIPGZ 0.45 0.28 0.63 0.41 0.44 0.44 0.62 0.39 0.51 0.45 0.71 0.47 
253 GPRTTRAQG 1.73 1.46 0.97 1.18 1.27 1.06 1.36 1.17 1.19 1.44 1.43 1.23 
254 AQDTYLVLD 0.76 0.51 0.82 0.75 0.91 0.45 0.62 0.49 0.72 0.60 0.86 0.68 
255 DIPESQMEE 0.69 0.57 0.70 0.71 0.72 0.39 0.63 0.52 0.75 0.59 0.74 0.54 
256 FPRASFGSR 1.69 1.27 2.21 1.52 2.28 1.63 1.62 1.62 1.20 1.53 2.62 1.65 
257 GRKASGSSP 0.91 0.66 1.05 0.93 1.04 1.08 1.16 1.07 0.93 1.03 1.08 0.88 
258 EDVGSDEEE 1.23 0.51 1.82 1.21 0.99 0.39 0.83 0.62 1.30 1.31 1.54 0.58 
259 EPAVSPLLP 0.56 0.46 0.90 0.79 0.68 0.49 0.68 0.52 0.73 0.59 1.14 0.90 
260 RRRASQLKI 1.03 0.80 0.70 0.92 0.87 0.48 0.82 0.92 0.74 0.85 0.77 0.55 
261 SFTTTAERE 0.47 0.37 0.39 0.41 0.62 0.38 0.62 0.45 0.66 0.38 0.57 0.43 
262 PLSRTL 0.44 0.47 0.74 0.55 0.69 0.51 0.54 0.47 0.76 0.54 0.73 0.46 
263 SGRGK 0.88 0.67 0.87 0.90 1.11 1.03 1.03 1.28 0.97 1.06 1.16 1.12 
264 APRSPGGRR 1.99 1.25 1.85 1.51 3.07 3.23 1.89 2.34 2.05 1.84 2.76 1.97 
265 DGERYDEDE 1.35 0.55 1.69 1.54 1.36 0.78 0.96 0.89 1.08 1.75 1.31 0.98 
266 FKRPTLRRV 2.12 1.39 3.32 2.59 2.84 1.85 2.02 2.81 2.19 2.09 2.73 2.40 
267 REAEYEPET 1.10 0.68 0.96 0.94 1.31 0.37 0.66 0.56 0.96 1.00 1.26 0.61 
268 DRVYIHPF 0.53 0.39 0.62 0.63 0.87 0.56 0.75 0.54 0.76 0.92 0.81 0.52 
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269 VRRISGL 1.42 1.19 1.43 1.47 1.51 1.06 0.73 1.32 1.05 1.46 1.81 1.26 
270 RRKGTDVNV 0.92 0.59 0.90 0.86 1.35 0.96 0.95 1.11 0.82 1.04 1.48 0.97 
271 SETKTEEEE 0.55 0.37 0.81 0.71 0.76 0.57 0.57 0.52 0.82 0.75 0.79 0.60 
272 PQRATSNVF 0.64 0.51 0.90 0.87 0.90 0.62 0.71 0.80 0.77 0.94 0.81 0.57 
273 RRGSV 1.82 1.02 2.09 2.13 2.70 1.52 1.63 1.96 1.35 1.40 2.39 1.69 
274 STSKSESSQ 0.53 0.41 0.42 0.55 0.61 0.35 0.48 0.30 0.64 0.54 0.69 0.59 
275 TRAPSRTAS 1.73 1.24 1.14 1.47 1.74 1.49 0.91 1.08 1.04 1.52 1.72 1.52 
276 VPRTPGGRR 2.14 1.95 1.95 2.34 3.39 4.26 1.73 2.42 2.12 1.98 3.04 2.56 
277 RASSSRSVR 3.37 3.39 3.04 2.98 5.00 3.87 2.73 3.34 1.48 2.45 5.79 4.16 
278 SPSSSPASL 0.56 0.40 0.62 0.62 0.76 0.61 0.54 0.38 0.52 0.42 0.80 0.58 
279 RVYVHPF 1.04 0.70 1.35 1.17 1.23 1.00 1.19 1.58 1.53 1.49 1.09 0.94 
280 VRRVSDDVR 0.47 0.39 0.76 0.68 0.63 0.53 0.65 0.39 0.63 0.59 0.59 0.56 
281 SRKMSIQEY 0.59 0.54 0.53 0.86 0.95 0.39 0.59 0.43 0.56 0.65 1.04 0.77 
282 LSGFSFKKS 1.24 1.28 1.17 1.15 1.46 1.22 1.14 1.19 1.28 1.41 1.42 1.25 
283 PSSTSSSSI 0.49 0.48 0.59 0.60 0.74 0.62 0.52 0.35 0.55 0.53 0.93 0.71 
284 STGIYEALE 1.47 1.09 1.61 1.71 1.54 1.04 0.64 0.59 0.94 1.12 1.49 1.19 
285 TPPKSPSAS 0.49 0.39 0.64 0.52 0.64 0.41 0.58 0.69 0.67 0.46 0.72 0.54 
286 LYSSSPGGA 0.49 0.45 0.70 0.56 0.61 0.58 0.59 0.36 0.58 0.47 0.58 0.48 
287 PVPKSPVEE 0.51 0.41 0.79 0.56 0.60 0.52 0.58 0.29 0.66 0.50 0.51 0.39 
288 KKASFKAKK 1.73 1.87 2.28 2.36 2.43 2.09 1.37 2.37 3.23 2.68 2.02 1.81 
289 KSPAKTPVK 1.31 1.17 1.10 1.25 1.58 1.48 1.23 1.38 1.40 1.70 2.07 1.62 
290 PLSKTLSVSS 0.47 0.42 0.59 0.70 0.72 0.46 0.70 0.26 0.60 0.64 0.76 0.57 
291 SRGKSSSYS 1.37 1.13 1.03 1.30 0.89 0.94 1.09 1.34 1.14 1.55 1.14 1.00 
292 KKLGSKKPQ 1.41 1.48 1.63 1.67 0.91 0.99 1.45 2.05 2.68 2.05 1.03 0.97 
293 KTTASTRKV 2.36 2.28 2.34 3.05 2.38 2.04 1.60 2.01 2.39 2.53 2.65 2.47 
294 PRRRTRRAS 0.60 0.59 0.95 0.77 0.79 0.61 0.61 0.41 0.90 0.71 0.74 0.44 
295 IHQRSRKRL 2.17 0.83 1.75 1.03 0.64 0.39 1.49 1.67 1.72 1.27 0.40 0.48 
296 NDALSGSGN 0.43 0.36 0.84 0.41 0.40 0.30 0.63 0.23 0.60 0.38 0.44 0.43 
297 EETQTQDQP 0.36 0.16 0.68 0.33 0.45 0.31 0.59 0.24 0.56 0.32 0.63 0.42 
298 ERSQSRKDS 0.67 0.41 0.85 0.53 0.54 0.36 1.09 0.72 0.70 0.73 0.50 0.44 
299 IRQASQAGP 0.25 0.12 0.75 0.37 0.70 0.29 0.60 0.27 0.66 0.42 0.45 0.42 
300 NFDDYMKEV 0.54 0.09 1.19 0.56 0.79 0.29 0.58 0.40 0.88 0.78 0.45 0.30 
301 PYKFPSSPLRIPGZ 0.24 0.20 0.80 0.34 0.79 0.30 0.41 0.23 0.57 0.46 0.50 0.32 
302 GRRQSLIQD 0.70 0.60 1.21 0.79 0.56 0.53 0.84 0.49 0.67 0.60 0.74 0.65 
303 ASFEYTILD 0.92 0.69 1.80 1.14 0.73 0.45 0.74 0.48 0.78 0.70 0.77 0.54 
304 DLSTYASIN 0.48 0.25 0.90 0.57 0.81 0.42 0.58 0.30 0.64 0.43 0.73 0.46 
305 GDNDYIIPL 0.74 0.41 1.64 0.96 0.64 0.37 0.66 0.44 0.63 0.83 0.54 0.45 
306 GSESTEDQA 0.28 0.17 0.86 0.34 0.45 0.40 0.54 0.31 0.97 0.61 0.55 0.40 
307 EENVSVDDT 0.40 0.11 0.95 0.44 0.56 0.40 0.63 0.46 0.79 0.52 0.48 0.40 
308 ERRKSKSGA 0.90 0.37 0.98 0.57 0.82 0.43 1.06 0.70 1.01 0.85 0.57 0.52 
309 RRSRSRSRS 2.62 2.15 2.99 2.75 2.29 1.66 2.53 2.91 2.32 2.06 2.33 1.48 
310 SKIGSLDNI 0.50 0.39 0.85 0.52 0.42 0.40 0.62 0.42 0.56 0.49 0.46 0.40 
311 NDITSL 0.57 0.38 1.06 0.50 0.57 0.37 0.70 0.42 0.73 0.47 0.54 0.60 
312 AARGSFDAS 0.39 0.31 0.69 0.38 0.42 0.40 0.57 0.41 0.67 0.46 0.49 0.44 
313 ARNDSVTVA 0.26 0.27 0.68 0.45 0.55 0.44 0.65 0.37 1.00 0.48 0.47 0.41 
314 DLFGSDEED 0.89 0.45 1.68 0.90 0.80 0.57 0.80 0.52 0.87 0.85 0.63 0.45 
315 FSSRSYTSG 1.19 0.56 1.39 0.81 0.71 0.38 1.33 1.16 1.12 1.32 0.63 0.53 
316 RGKSSSYSK 1.30 1.03 1.30 1.20 0.63 0.67 1.26 1.05 0.98 1.29 0.69 0.46 
317 RKRSRAEA 0.94 0.75 0.82 0.72 0.61 0.49 1.05 0.82 0.98 0.94 0.47 0.41 
318 LKRASLG 0.61 0.64 0.83 0.52 0.51 0.43 0.85 0.40 0.68 0.76 0.41 0.48 
319 RRRPTPATL 1.36 1.09 1.26 0.71 1.14 0.75 1.55 3.02 0.98 0.95 0.93 0.78 
320 SIADTFVGT 0.44 0.37 1.33 0.43 0.58 0.47 0.69 0.50 0.86 0.64 0.47 0.44 
321 LRRNSI 1.13 0.84 2.14 1.52 0.86 0.61 1.27 1.24 1.02 1.18 0.66 0.63 
322 RRRRASVA 2.73 1.73 3.39 2.84 2.56 1.52 3.00 3.02 2.95 2.23 1.92 1.88 
323 TATDYHTTS 0.46 0.52 0.72 0.53 0.71 0.54 0.66 0.38 0.66 0.55 0.74 0.41 
324 TRRASRPVR 1.69 1.73 2.02 1.77 0.92 0.60 1.27 1.25 1.97 1.97 0.95 0.58 
325 VSSSSYRRM 2.43 2.60 2.58 2.09 1.06 0.91 2.10 1.77 1.68 1.65 1.08 0.90 
326 REVSSLKNK 0.74 0.83 1.10 0.76 0.60 0.68 1.09 1.05 1.03 0.99 0.47 0.64 
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327 LSYRRYSL 1.43 1.27 2.34 1.88 1.04 0.79 1.55 1.28 1.41 1.47 1.00 0.74 
328 KKKASVA 0.82 0.51 1.25 0.79 0.74 0.54 1.12 0.71 0.84 0.88 0.57 0.50 
329 WKRTSMKLL 1.01 0.65 1.71 1.21 0.87 0.49 1.34 1.11 1.36 1.44 0.81 0.50 
330 SRRQSVLVK 1.16 1.11 1.75 1.67 1.32 1.05 1.04 1.06 1.41 1.53 1.14 1.10 
331 PENDYEDVE 2.34 1.55 2.38 2.48 2.12 0.99 1.13 1.51 1.43 1.71 1.42 0.93 
332 QEGLYNELQ 0.59 0.53 1.17 0.75 0.78 0.58 0.66 0.39 0.86 0.84 0.54 0.47 
333 SVPPSPSLS 0.46 0.35 0.69 0.49 0.57 0.55 0.54 0.44 0.65 0.43 0.48 0.41 
334 TRKVSLAPQ 0.59 0.53 0.76 0.55 0.71 0.57 0.82 0.60 0.87 1.06 0.58 0.50 
335 PKDPSQRRR 1.01 0.47 1.05 0.87 0.87 0.70 1.03 0.83 1.32 1.30 0.82 0.69 
336 KRKQISVR 1.76 1.15 2.55 1.91 1.18 0.91 1.84 2.18 2.99 2.36 1.43 1.01 
337 KLRRSSSVG 2.62 2.11 2.73 2.51 3.07 2.34 1.45 1.52 1.76 2.12 3.36 2.65 
338 LDPLSEPED 0.92 0.59 1.53 0.99 0.86 0.79 0.67 0.63 1.02 1.51 0.99 0.71 
339 QAGMTAPGT 0.46 0.38 0.74 0.49 0.46 0.55 0.55 0.30 0.63 0.39 0.40 0.42 
340 SRRASRPVR 1.65 1.03 1.48 1.00 1.29 1.19 1.35 1.13 1.21 1.17 1.47 1.21 
341 KPGFSPQPS 0.57 0.41 0.70 0.37 0.72 0.82 0.83 0.52 0.74 0.59 0.58 0.84 
342 LLPMSPEEF 0.59 0.35 1.19 0.65 0.78 0.61 0.61 0.48 0.98 1.10 0.51 0.39 
343 QLNDSSEEE 0.67 0.32 1.23 0.78 0.85 0.43 0.69 0.61 1.18 1.36 0.52 0.39 
344 KGGSYSQAA 0.48 0.41 0.74 0.38 1.31 0.75 0.91 0.69 0.86 0.92 1.11 1.04 
345 NIYISPLKS 0.52 0.35 0.75 0.60 1.18 0.65 0.91 0.93 0.86 0.79 1.06 1.06 
346 EIRVSINEK 0.33 0.22 0.57 0.30 1.33 0.30 0.61 0.56 0.49 0.33 0.67 0.57 
347 ESRISLPLP 0.57 0.32 0.60 0.50 2.25 0.28 0.70 0.52 0.56 0.34 0.61 0.41 
348 KRPSIRAKA 2.82 1.27 3.50 2.21 3.84 1.10 1.69 1.99 1.97 1.55 1.84 1.37 
349 NPGFYVEAN 0.90 0.49 1.10 0.85 2.44 0.50 0.83 0.97 0.87 0.63 0.91 0.60 
350 PYKFPSSPLRIPGZ 0.45 0.23 0.52 0.72 0.96 0.38 0.58 0.71 0.58 0.18 0.42 0.39 
351 GSRGSGSSV 0.61 0.43 0.67 0.37 0.98 0.56 1.09 0.89 0.52 0.55 0.89 0.81 
352 DAGASPVEK 0.38 0.15 0.68 0.49 0.73 0.23 0.58 0.38 0.67 0.51 0.43 0.68 
353 DRRVSVAAE 0.39 0.22 0.42 0.23 1.03 0.20 0.65 0.28 0.70 0.34 0.42 0.45 
354 GGRASDYKS 0.77 0.42 0.71 0.34 1.86 0.40 1.05 1.03 0.85 0.68 0.75 0.67 
355 GVDTYVEMR 0.45 0.26 0.87 0.47 2.51 0.28 0.59 0.55 0.69 0.50 0.64 0.38 
356 EGTHSTKRG 0.96 0.63 0.84 0.70 1.97 0.67 1.03 1.24 0.97 0.64 0.71 0.63 
357 ESLESYEIN 0.82 0.36 1.05 0.81 1.67 0.48 0.77 0.87 0.85 0.57 1.05 0.51 
358 RVRKTKGKY 1.84 1.00 2.38 1.65 2.09 1.60 1.88 1.93 1.82 2.02 1.73 1.51 
359 SNPEYLSAS 0.64 0.29 1.16 0.57 0.85 0.36 0.71 0.60 0.93 0.86 0.65 0.51 
360 RRSTVA 1.41 1.00 1.23 0.74 2.11 0.94 1.47 1.45 1.05 1.02 1.98 1.28 
361 AEPGSPTAA 0.21 0.21 0.49 0.19 1.05 0.14 0.69 0.47 0.43 0.20 0.42 0.43 
362 AVDGYVKPQ 0.37 0.25 0.75 0.36 1.30 0.32 0.57 0.49 0.59 0.49 0.43 0.39 
363 DPGVSYRTR 1.17 0.65 1.04 0.77 1.70 0.70 1.29 1.42 1.10 0.73 1.06 0.95 
364 GEINTEDDD 0.51 0.24 0.85 0.59 0.95 0.36 0.84 0.91 1.13 0.59 0.74 0.39 
365 RLSISTESQ 0.48 0.25 0.75 0.37 0.66 0.35 0.64 0.42 0.77 0.55 0.47 0.55 
366 RKEISVR 1.10 0.60 1.21 0.84 1.93 1.27 1.26 1.16 1.38 1.06 1.63 1.37 
367 PGSPQKR 0.34 0.38 0.55 0.31 0.84 0.35 0.71 0.50 0.62 0.38 0.45 0.86 
368 RSGYSSPGS 0.58 0.51 1.14 0.22 1.02 0.64 1.09 1.19 0.68 0.46 0.60 0.73 
369 SLRASTSKS 1.58 1.29 1.87 1.14 1.81 0.99 1.46 1.58 1.07 0.93 1.31 1.35 
370 VRKISGL 0.91 0.61 0.73 0.45 0.96 0.43 1.06 1.34 0.94 0.77 1.01 0.57 
371 ADGVYAASG 0.61 0.24 0.96 0.57 0.99 0.31 0.77 0.77 0.97 0.56 0.51 0.36 
372 TGFLTEYVA 0.74 0.28 1.20 0.75 0.92 0.57 0.60 0.69 0.92 0.90 0.79 0.57 
373 TVSTSLGHS 0.48 0.28 0.57 0.48 0.68 0.57 0.68 0.49 0.64 0.78 0.48 0.38 
374 YDKEYYSVH 0.83 0.47 0.96 0.66 1.59 0.65 1.09 0.99 0.98 0.84 1.27 2.11 
375 RKLKSQGTR 1.22 0.80 1.05 0.60 1.63 1.19 1.28 1.47 1.09 1.06 1.43 1.40 
376 NRKPSKDKD 0.80 0.71 0.96 0.53 1.85 1.47 1.27 1.51 0.94 0.92 1.74 1.76 
377 LRRASPG 0.58 0.58 0.73 0.46 1.47 0.82 1.28 1.04 0.66 0.69 1.14 1.17 
378 YMAPYDNYV 1.08 0.48 1.14 0.77 1.35 0.42 0.94 1.13 1.09 0.86 1.05 0.70 
379 SSKAYGNGY 0.54 0.33 0.85 0.44 0.72 0.43 0.68 0.62 0.93 0.91 0.50 0.52 
380 PLTPSGEAP 0.40 0.40 0.74 0.42 0.88 0.83 0.55 0.69 0.88 0.61 0.76 0.69 
381 RRRRPTPA 1.97 2.33 3.45 3.60 5.34 4.93 2.37 3.24 4.21 3.34 5.35 5.16 
382 TEGQYQPQP 0.37 0.36 0.58 0.46 0.90 0.68 0.76 0.55 1.12 0.64 0.80 0.66 
383 TSSSSIFDI 0.57 0.39 0.82 0.46 1.14 0.59 0.62 0.64 0.94 0.64 0.89 0.80 
384 PPSPSLSRH 2.42 1.87 1.92 1.64 2.88 1.89 1.93 1.95 2.10 1.73 2.27 2.26 
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385 SSKRAKAK 1.39 1.25 1.52 1.25 3.88 3.48 1.66 1.88 1.55 1.31 2.66 2.78 
386 KRKNSILNP 0.87 0.68 1.28 1.04 1.26 1.00 1.12 1.23 1.50 1.19 1.28 1.09 
387 LNRMSFASN 0.81 0.58 1.35 1.01 1.01 0.76 0.70 1.12 0.98 0.88 0.92 0.80 
388 QRHGSKYLA 0.35 0.23 0.66 0.42 1.16 0.81 0.51 0.81 1.16 0.58 0.81 0.57 
389 SRTASFSES 0.45 0.27 0.70 0.37 0.78 0.54 0.74 0.67 0.92 0.50 0.46 0.49 
390 KRPSDRAKA 1.68 1.23 1.48 1.17 1.88 1.33 1.59 1.78 1.85 1.42 1.82 1.72 
391 LRGPSWDPF 0.55 0.34 0.75 0.42 1.04 0.43 0.70 0.60 0.76 0.69 0.60 0.48 
392 QRSTSTPNV 0.33 0.24 0.39 0.38 1.11 0.66 0.60 0.51 0.52 0.36 0.48 0.50 
393 HDALSGSGN 0.52 0.39 0.47 0.37 0.73 0.61 0.72 0.41 0.47 0.45 0.33 0.35 
394 KRPSQRAKY 2.61 2.06 1.85 1.73 0.70 0.39 1.79 1.90 1.58 1.73 0.45 0.48 
395 EDNEYTARE 2.09 1.56 1.53 1.21 1.33 0.31 0.86 0.71 1.05 1.10 0.37 0.37 
396 ENAFSPSRS 0.66 0.58 0.62 0.45 0.63 0.32 0.50 0.14 0.47 0.36 0.24 0.32 
397 HKSGYLSSE 0.67 0.44 0.43 0.44 0.85 0.28 0.66 0.34 0.45 0.47 0.32 0.35 
398 LAYESHESM 0.48 0.36 0.68 0.59 1.01 0.53 0.51 0.15 0.56 0.34 0.43 0.37 
399 PYKFPSSPLRIPGZ 0.57 0.37 0.61 0.62 1.14 0.40 0.53 0.32 0.91 0.43 0.63 0.58 
400 GHQGTVPSD 0.52 0.37 0.37 0.33 0.91 0.60 0.58 0.49 0.40 0.21 0.33 0.47 
401 ANDEYFIRK 0.57 0.34 0.49 0.46 0.62 0.31 0.58 0.32 0.39 0.24 0.32 0.34 
402 DEASTTVSK 0.54 0.44 0.55 0.53 0.67 0.35 0.54 0.44 0.60 0.31 0.26 0.39 
403 FEARYQQPF 0.76 0.67 0.71 0.61 0.66 0.28 0.64 0.42 0.72 0.50 0.31 0.33 
404 GLLRSWNDP 0.82 0.60 0.74 0.60 0.85 0.36 0.70 0.45 0.61 0.54 0.54 0.33 
405 DTVTSPQRA 3.04 2.23 2.65 2.39 0.94 0.37 1.32 1.15 1.50 1.74 0.41 0.26 
406 EKHHSIDAQ 0.58 0.56 0.64 0.55 0.96 0.39 0.88 0.53 0.61 0.39 0.76 0.39 
407 RRASTIEMP 1.34 1.23 0.83 0.77 0.54 0.30 1.00 1.71 0.50 0.62 0.34 0.41 
408 SDEESNDDS 1.49 1.48 1.61 0.70 0.71 0.38 0.79 0.55 0.89 0.65 0.37 0.49 
409 NVFSSPGGT 0.57 0.46 0.83 0.52 0.60 0.31 0.62 0.32 0.58 0.31 0.31 0.49 
410 RRASF 2.67 2.51 2.02 2.02 0.54 0.34 1.81 1.92 1.12 1.51 0.31 0.40 
411 AKGGTVKAA 1.14 1.06 0.60 0.66 0.58 0.34 1.24 0.83 0.76 0.83 0.39 0.41 
412 DDEITQDEN 0.98 0.88 0.89 0.72 0.93 0.30 0.76 0.49 0.82 0.65 0.34 0.42 
413 ETDDYAEII 0.97 0.78 1.00 0.87 1.00 0.58 0.63 0.32 0.70 0.51 0.44 0.47 
414 YTTNSPSKI 0.74 0.94 0.44 0.49 0.40 0.43 0.68 0.31 0.45 0.36 0.25 0.42 
415 SPLKSPYKI 1.17 1.21 0.86 0.64 0.43 0.28 1.01 0.87 0.57 0.80 0.30 0.31 
416 RKRTRKE 1.72 1.68 1.60 1.25 0.54 0.54 1.39 1.46 1.90 1.40 0.52 0.51 
417 RPPGFTPFR 1.66 1.80 0.97 1.03 0.51 0.41 1.31 1.29 0.83 1.04 0.37 0.44 
418 SASGTPNKE 0.50 0.52 0.38 0.43 0.61 0.53 0.46 0.39 0.52 0.35 0.27 0.36 
419 NSVDTSSLS 0.64 0.54 0.77 0.64 0.61 0.46 0.68 0.36 0.59 0.52 0.35 0.45 
420 LRANSI 0.70 0.68 0.67 0.73 0.72 0.61 0.86 0.32 0.65 0.66 0.47 0.39 
421 SSSSSPSRR 2.84 3.22 1.41 1.19 0.46 0.71 1.59 1.44 0.86 1.51 0.71 0.68 
422 TKSASFLKG 1.56 1.56 1.28 1.07 0.33 0.36 1.15 0.82 0.63 0.81 0.30 0.53 
423 VESLSSSEE 1.17 1.10 1.02 0.95 0.54 0.35 0.80 0.58 0.77 0.62 0.38 0.43 
424 YRRNSVRFL 1.81 2.34 1.89 1.92 0.49 0.52 2.06 2.33 1.16 1.50 0.46 0.65 
425 SPALTGDEA 0.84 0.60 0.69 0.69 0.46 0.34 0.65 0.41 0.82 0.51 0.34 0.50 
426 RKQITVR 2.01 1.92 1.68 1.72 0.73 0.79 1.86 2.48 1.91 1.65 0.53 0.63 
427 VHNRSKINL 1.09 1.10 1.02 1.14 0.68 0.67 0.98 0.96 1.09 1.06 0.53 0.54 
428 SPVHSIADE 0.94 0.60 0.72 0.50 0.52 0.37 0.60 0.33 0.44 0.54 0.28 0.46 
429 LRRASLGAF 2.59 2.91 2.56 2.18 0.67 0.74 1.76 1.36 1.47 1.68 0.66 0.76 
430 PRKGSPRKG 1.79 1.70 1.11 1.00 0.52 0.41 1.21 0.97 1.13 0.96 0.36 0.50 
431 SSPGSPGTP 0.67 0.51 0.69 0.62 0.49 0.42 0.79 0.47 0.45 0.48 0.34 0.46 
432 TKAASEKKT 0.84 0.58 0.89 0.93 0.61 0.35 0.86 0.53 0.78 0.64 0.36 0.42 
433 LRRSSSVGY 4.16 4.07 4.21 4.33 1.09 0.92 3.35 2.75 2.54 3.82 0.98 1.07 
434 PSEKSEEIT 0.89 0.83 0.88 1.00 0.63 0.56 0.76 0.50 0.53 0.55 0.42 0.44 
435 KAQEYFNIK 0.68 0.53 0.39 0.49 0.47 0.50 0.81 0.38 0.66 0.51 0.45 0.46 
436 KRQSSTSNA 1.27 1.58 0.92 0.81 0.81 0.68 1.19 1.00 1.17 0.94 0.59 0.69 
437 QKRPSQRSKYL 2.82 3.21 2.64 2.41 1.17 0.74 1.92 1.97 1.55 1.67 0.84 0.67 
438 QSPSSSPTH 0.74 0.86 0.59 0.54 0.65 0.50 0.65 0.29 0.56 0.43 0.37 0.41 
439 KGHEYTNIK 0.97 1.01 1.03 1.01 0.81 0.40 1.09 0.85 0.99 0.88 0.44 0.36 
440 KRRSSSYHV 3.62 3.68 4.27 4.43 1.55 1.06 3.14 3.05 4.04 3.53 1.42 1.36 
441 KAKQISVRGL 1.93 1.99 2.05 2.07 0.89 0.52 1.56 1.69 1.45 1.73 0.67 0.67 
442 HSIYSSDDD 0.41 0.30 0.41 0.47 1.52 0.92 0.62 0.26 0.60 0.34 1.20 0.79 
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443 LVMQTAAGT 0.91 0.81 1.12 1.02 0.89 0.47 0.80 0.57 0.93 1.12 0.72 0.59 
444 EEELYLEPL 1.24 1.27 1.38 1.93 1.68 1.24 0.62 0.40 0.82 0.97 1.31 1.00 
445 EQLSTSEEN 0.44 0.34 0.83 0.75 0.65 0.62 0.56 0.22 0.88 0.49 0.58 0.47 
446 IDMESQERI 0.44 0.31 0.71 0.54 0.75 0.69 0.51 0.31 0.69 0.42 0.66 0.49 
447 MILLSELSR 0.36 0.37 0.57 0.53 0.72 0.56 0.57 0.37 0.59 0.48 0.59 0.45 
448 PYKFPSSPLRIPGZ 0.33 0.35 0.59 0.44 0.30 0.56 0.64 0.35 0.61 0.50 0.52 0.30 
449 GPAASPAAA 0.33 0.22 0.35 0.46 0.81 0.44 0.64 0.15 0.37 0.27 0.38 0.51 
450 AQAASPAKG 0.40 0.34 0.57 0.54 0.76 0.91 0.72 0.47 0.57 0.51 0.65 0.75 
451 DHSRSTKAA 0.86 1.00 0.79 0.96 1.12 1.08 1.05 1.01 0.99 1.19 1.20 1.09 
452 FPFHSPSRL 1.18 1.52 1.31 1.50 1.56 1.57 1.52 1.08 0.99 1.48 1.81 1.79 
453 GRILTLPRS 1.12 1.12 1.15 1.25 2.31 2.95 1.43 1.13 0.89 1.42 2.73 2.53 
454 EDVGSDEED 1.03 0.64 1.39 1.19 0.93 0.75 0.91 0.66 1.25 1.41 0.90 0.63 
455 ENTVSTSLG 0.27 0.37 0.66 0.59 0.48 0.57 0.55 0.35 0.58 0.53 0.62 0.39 
456 RRQHSYDTF 0.72 0.95 0.65 0.59 1.00 0.58 0.98 0.75 0.90 0.82 0.72 0.78 
457 SFMMTPYVV 0.50 0.44 0.60 0.63 0.80 0.40 0.71 0.28 0.69 0.35 0.55 0.41 
458 PGTESFVNA 0.46 0.39 0.75 0.67 0.67 0.42 0.72 0.33 0.90 0.54 0.50 0.46 
459 SDEEV 0.65 0.53 0.86 0.75 0.77 0.62 0.76 0.54 0.96 0.83 0.68 0.56 
460 APQTPGGRR 1.38 0.98 1.21 1.19 1.92 2.47 1.45 1.20 1.07 1.57 2.38 3.99 
461 DFPLSPPKK 0.49 0.53 0.74 0.78 0.87 0.81 0.96 0.60 0.76 1.07 0.87 0.81 
462 FKAFSPKGS 0.88 0.93 0.87 1.26 1.16 1.35 1.23 0.96 0.91 1.52 1.34 1.21 
463 RDSNYISKG 0.68 0.69 0.56 0.77 0.92 0.92 0.72 0.34 0.75 0.53 0.92 1.28 
464 DDEESESD 1.68 1.27 2.17 1.88 1.17 1.06 1.08 1.06 1.28 1.48 1.08 0.79 
465 VKRISGL 1.08 0.97 0.90 1.02 0.95 1.03 1.22 1.29 0.87 1.15 0.94 0.95 
466 RRKDYPALH 0.69 0.58 0.69 0.75 1.72 0.98 1.09 0.65 0.72 0.92 0.91 0.82 
467 SEKKSKGLG 0.65 0.37 0.58 0.63 0.64 0.58 0.84 0.63 0.63 0.76 0.74 0.76 
468 PPSAYGSVK 0.87 0.76 0.95 1.14 1.00 1.01 1.04 0.74 0.85 1.25 1.23 1.06 
469 RRFSV 1.39 1.40 2.59 1.93 2.01 2.33 1.73 1.39 1.30 1.73 2.51 2.06 
470 STRRSVRGS 3.77 3.89 3.42 3.85 3.92 4.76 2.30 3.20 2.36 3.23 4.87 4.97 
471 TQSTSGRRR 2.56 3.04 2.75 2.76 2.67 3.25 2.02 2.93 2.87 2.87 3.30 3.59 
472 VNELSKDIG 0.37 0.48 0.54 0.60 0.73 0.65 0.72 0.52 0.67 0.51 0.67 0.68 
473 RAGETRFTD 0.36 0.41 0.59 0.58 0.62 0.62 0.66 0.27 0.67 0.41 0.59 0.51 
474 SPSPSFRWP 0.51 0.54 0.72 0.79 1.14 1.04 0.85 0.67 0.62 0.59 1.37 1.16 
475 RVSGSRR 3.23 3.29 2.76 3.24 4.92 5.49 3.13 2.66 2.30 2.92 5.95 5.10 
476 VRLRSSVPG 1.28 1.40 1.22 1.23 1.41 1.87 1.56 1.24 1.03 1.57 2.39 1.81 
477 SRKLSDFGQ 0.70 0.78 0.72 0.81 0.79 0.76 0.72 0.44 0.66 0.59 0.80 0.68 
478 LSGFSFKKN 1.14 1.27 1.19 1.46 1.36 1.13 1.31 1.43 1.28 1.47 1.17 1.19 
479 PSRRSRSRS 0.65 0.68 0.63 0.82 0.85 0.68 0.71 0.30 0.78 0.63 0.57 0.59 
480 STDYYREGP 1.44 1.08 1.57 1.68 1.48 1.63 1.12 1.07 1.21 1.61 1.55 1.03 
481 TPAISPSKR 1.19 0.99 1.14 1.34 1.73 1.82 1.17 1.21 1.16 1.53 1.97 1.72 
482 LVVASAGPT 0.43 0.64 0.68 0.63 0.74 0.93 0.71 0.42 0.65 0.53 0.95 0.65 
483 PVPEYINQS 0.57 0.62 0.88 0.91 0.73 0.70 0.82 0.61 0.93 0.98 0.77 0.48 
484 KKAESPVKE 0.54 0.66 0.79 0.69 0.93 0.90 0.98 0.54 0.90 0.71 0.87 1.01 
485 KSLNYIDLD 0.93 0.86 1.01 1.65 1.39 1.07 0.79 0.59 0.90 1.22 1.05 0.97 
486 KRKQISVRGL 1.84 1.97 1.84 2.19 1.87 1.59 1.79 1.40 2.07 1.87 1.48 1.73 
487 SRGDYMTMQ 0.45 0.51 0.39 0.51 0.60 0.78 0.56 0.41 0.58 0.37 0.59 0.54 
488 KKKGSGEDD 0.43 0.41 0.58 0.62 0.85 1.03 0.80 0.48 0.76 0.65 1.02 0.95 
489 KTSPSSSPA 0.35 0.49 0.49 0.60 0.72 0.91 0.74 0.38 0.67 0.57 0.89 0.88 
490 PRRRSSFGI 0.68 0.79 0.80 0.85 0.51 0.64 0.62 0.54 0.78 0.65 0.56 0.51 
491 IGSVSEDNS 1.65 1.57 1.87 1.56 0.45 0.62 1.71 2.32 1.50 1.91 0.45 0.33 
492 NAPVSALGE 0.47 0.37 0.66 0.47 0.61 0.54 0.29 0.36 0.69 0.67 0.45 0.39 
493 EETPYSYPT 1.41 1.14 1.98 1.81 0.85 0.70 1.15 1.52 1.24 1.93 0.73 0.48 
494 ERSPSPSFR 1.52 1.23 1.88 1.47 0.68 0.64 1.97 2.01 1.22 1.80 0.71 0.60 
495 IRKYTMRRL 1.52 1.09 2.33 1.80 0.96 0.92 2.29 2.73 1.90 2.21 0.74 0.84 
496 NEEESSYSY 2.38 1.23 2.38 2.71 1.65 1.12 1.28 1.47 1.68 2.26 1.14 0.87 
497 PYKFPSSPLRIPGZ 0.46 0.25 0.61 0.49 1.03 0.76 0.57 0.30 0.66 0.73 0.80 0.71 
498 GRRQSLIED 0.75 0.57 1.05 1.21 0.38 0.58 0.84 0.77 0.94 0.87 0.54 0.30 
499 ASATSSSGG 0.40 0.33 0.64 0.43 0.43 0.49 0.30 0.35 0.74 0.60 0.55 0.24 
500 DLPMSPRTL 0.29 0.26 0.61 0.41 0.51 0.52 0.40 0.38 0.57 0.63 0.34 0.46 
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501 GDLQSAEFH 0.42 0.21 0.86 0.57 0.56 0.55 0.72 0.60 0.67 0.87 0.43 0.35 
502 GSEEYMNMD 0.47 0.35 0.72 0.58 0.64 0.46 0.71 0.47 0.64 0.54 0.29 0.40 
503 EENTYDEYE 0.57 0.36 0.95 0.70 1.35 0.96 0.69 0.43 0.77 0.92 0.86 0.64 
504 ERRKSHEAE 0.80 0.50 0.88 0.87 0.66 0.35 1.10 1.10 1.04 1.20 0.40 0.34 
505 RRRVTSATR 2.81 2.22 2.28 1.93 0.66 0.83 2.29 2.69 2.15 2.46 0.61 0.62 
506 SKDSSKRGR 1.77 1.30 2.13 1.82 0.56 0.76 2.09 2.61 2.04 2.63 0.60 0.59 
507 MSVEEV 0.39 0.34 0.70 0.56 0.37 0.49 0.53 0.37 0.84 0.62 0.37 0.35 
508 AALESEDED 0.65 0.45 1.30 1.13 0.54 0.55 0.88 0.89 1.21 1.49 0.44 0.43 
509 ARKSTRRSI 2.35 1.70 2.59 2.63 0.80 0.93 1.98 2.32 2.42 2.44 0.55 0.68 
510 DLFGSDDEE 0.90 0.76 1.46 1.28 0.86 0.66 0.72 0.75 0.83 1.33 0.47 0.50 
511 FRRLSISTE 0.76 0.50 0.89 0.83 0.72 0.46 1.07 0.82 0.70 1.14 0.39 0.38 
512 RGAISAEVY 0.67 0.68 0.92 0.88 0.53 0.61 0.87 0.71 1.00 1.16 0.50 0.46 
513 RKISASEF 0.44 0.57 0.67 0.74 0.38 0.55 0.93 0.86 0.70 0.78 0.36 0.42 
514 LHRASLG 0.27 0.63 0.97 1.03 0.46 0.59 0.74 0.73 0.71 1.20 0.30 0.44 
515 RRRPTPAML 0.96 1.14 1.09 1.24 0.49 0.61 1.05 1.43 0.87 1.46 0.47 0.60 
516 SGYSSPGSP 0.34 0.32 0.67 0.57 0.30 0.52 0.54 0.44 0.57 0.63 0.36 0.39 
517 LGEGTP 0.47 0.44 0.78 0.57 0.52 0.41 0.55 0.50 0.59 0.73 0.36 0.36 
518 RRLSSLRA 3.26 3.50 4.08 3.22 1.49 1.68 3.63 4.49 1.88 3.60 1.46 1.40 
519 TAESSQAEE 0.38 0.56 0.94 0.78 0.38 0.71 0.77 0.41 1.12 0.71 0.37 0.48 
520 TRRASFSAQ 1.59 1.53 2.20 2.84 0.54 0.68 1.45 1.74 1.17 1.74 0.56 0.42 
521 VSRTSAVPT 0.43 0.47 0.64 0.73 0.44 0.56 0.83 0.48 0.43 0.71 0.40 0.39 
522 REQLSTSEE 0.33 0.41 0.77 0.59 0.43 0.63 0.52 0.33 0.69 0.87 0.35 0.31 
523 LSYRGYSL 0.37 0.37 1.00 0.63 0.47 0.55 0.58 0.27 0.49 0.76 0.31 0.41 
524 KASGSSP 0.41 0.39 0.58 0.46 0.48 0.56 0.60 0.44 0.70 0.74 0.32 0.37 
525 VVGGSLRGA 1.22 2.03 1.35 1.28 0.56 0.67 1.29 1.41 0.81 1.50 0.47 0.47 
526 SRRPSYRKI 1.34 1.48 1.53 2.40 0.52 0.66 1.38 1.70 1.47 1.77 0.58 0.51 
527 PEGDYEEVL 1.75 1.61 2.01 2.92 1.10 1.18 0.91 0.76 0.86 1.49 0.97 0.89 
528 QEGDTDAGL 0.43 0.34 1.03 0.98 0.54 0.65 0.54 0.76 1.05 1.06 0.45 0.44 
529 SVFSSPSAS 0.32 0.35 0.62 0.45 0.43 0.52 0.55 0.39 0.63 0.64 0.27 0.27 
530 TRKISQTAQ 0.40 0.32 0.83 0.65 0.58 0.54 0.64 0.35 0.74 0.94 0.38 0.39 
531 PINGSPRTP 0.37 0.30 0.64 0.47 0.60 0.49 0.65 0.33 0.94 0.81 0.31 0.37 
532 KQISVRGL 1.44 1.46 1.61 1.87 0.66 0.70 1.58 1.98 1.77 2.87 0.46 0.44 
533 KLINSIADT 0.34 0.50 0.68 0.63 0.41 0.63 0.63 0.34 0.66 0.74 0.47 0.48 
534 LDDQYTSSS 1.36 1.23 1.50 1.89 0.57 0.70 1.10 0.98 1.41 1.55 0.52 0.44 
535 PYDNYVPSA 0.94 0.87 1.33 1.22 0.52 0.53 0.87 0.81 1.16 1.43 0.39 0.37 
536 SRQLSSGVS 0.31 0.43 0.52 0.41 0.55 0.67 0.71 0.44 0.70 0.62 0.37 0.53 
537 KNIVTPRTP 0.86 1.47 0.98 1.23 0.72 0.77 1.23 1.31 1.42 1.67 0.58 0.63 
538 LKLASPELE 0.26 0.40 0.68 0.60 0.42 0.53 0.62 0.29 1.01 0.95 0.24 0.35 
539 QLIDSMANS 0.38 0.36 0.62 0.44 0.53 0.49 0.58 0.30 0.60 0.68 0.34 0.28 
540 IVYKSPVVS 0.50 0.36 0.74 0.61 2.02 1.23 0.78 0.77 0.96 0.92 1.06 0.82 
541 NGYISAAEL 0.54 0.45 1.75 1.62 0.94 0.52 0.87 0.92 1.53 1.94 0.66 0.40 
542 EILNSPEKA 0.20 0.28 0.36 0.36 0.53 0.43 0.51 0.37 0.57 0.49 0.42 0.39 
543 ESPESTEIT 0.36 0.26 0.80 0.32 0.76 0.32 0.56 0.43 0.61 0.64 0.38 0.46 
544 KRPSHRAKA 0.99 0.97 1.14 0.71 2.09 1.42 1.23 1.25 1.29 1.09 1.38 1.61 
545 NNYVYIDPT 0.58 0.42 0.91 0.50 1.27 0.58 0.72 0.65 0.79 0.70 1.00 0.79 
546 PYKFPSSPLRIPGZ 0.27 0.26 0.38 0.29 0.56 0.38 0.66 0.50 0.49 0.37 0.32 0.32 
547 GSPRTPRRG 1.37 1.55 2.20 1.51 3.62 3.97 1.91 2.06 2.14 1.89 2.89 3.19 
548 DADEYLIPQ 0.80 0.63 1.16 1.02 1.75 1.14 0.71 0.58 0.97 1.09 1.43 1.08 
549 DRLVSARSV 0.78 0.72 0.76 0.64 1.24 0.98 1.13 1.23 0.98 1.33 1.08 0.97 
550 GGLTSPGLS 0.28 0.26 0.57 0.27 0.59 0.26 0.52 0.40 0.71 0.44 0.45 0.46 
551 GTVPSDNID 0.34 0.16 0.83 0.35 0.65 0.26 0.65 0.45 0.75 0.69 0.34 0.36 
552 EGSAYEEVP 0.48 0.48 0.73 0.52 1.63 0.87 0.99 1.13 0.73 0.78 1.30 1.02 
553 ESIISQETY 0.93 0.53 0.95 0.74 1.37 0.96 0.78 0.80 0.90 0.84 1.08 0.88 
554 RVRKSKGKY 1.80 1.86 2.58 2.68 1.30 1.26 2.14 2.59 3.47 3.00 1.15 1.09 
555 SNDSTSVSA 0.39 0.35 0.57 0.44 0.74 0.41 0.64 0.39 0.59 0.57 0.39 0.32 
556 RRPTVA 0.93 1.28 0.91 0.91 1.53 1.40 1.22 1.35 1.05 1.06 1.43 1.43 
557 AEPDYGALY 0.92 0.82 1.23 2.45 1.79 1.31 0.79 0.69 0.97 0.93 1.45 1.18 
558 AVASSPSKA 0.37 0.41 0.51 0.41 0.60 0.62 0.98 0.76 0.61 0.47 0.81 0.62 
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559 DPGTSYRTR 0.94 1.00 0.76 0.58 1.17 0.94 1.16 1.23 0.88 1.03 1.02 0.97 
560 GEGTYGVVY 0.59 0.48 0.91 0.85 1.09 0.67 0.73 0.68 0.80 0.80 1.00 0.69 
561 RLRLSPSPT 0.90 0.90 0.72 0.65 1.01 0.88 1.20 1.14 0.95 1.09 0.97 0.98 
562 RKASRKE 1.01 1.10 1.09 0.83 1.33 1.44 1.42 1.37 1.51 1.30 1.45 1.35 
563 LRRWSLG 0.79 0.63 0.90 0.83 1.00 0.86 1.04 1.06 0.78 0.76 0.95 1.05 
564 RRVTSATRR 2.55 3.50 3.07 2.21 4.40 4.79 2.87 3.14 2.11 2.01 4.71 4.31 
565 SLQASIVTD 0.40 0.57 0.68 0.32 0.72 0.59 0.67 0.60 0.78 0.59 0.47 0.40 
566 RRATPA 1.18 1.24 0.75 0.59 1.20 0.92 1.11 1.37 1.07 1.03 1.13 0.96 
567 ADGIYAASG 0.61 0.54 0.73 0.56 0.99 0.65 0.85 0.89 0.89 0.86 0.82 0.62 
568 TGDTYTAHA 0.41 0.31 0.50 0.41 0.51 0.39 0.67 0.35 0.60 0.62 0.41 0.42 
569 TVSKTETSQ 0.33 0.22 0.38 0.34 0.45 0.46 0.64 0.45 0.69 0.67 0.44 0.58 
570 WTSDTQGDE 0.76 0.44 0.95 0.75 0.85 0.55 0.89 0.97 1.15 1.26 0.81 0.78 
571 RKFSSARPE 0.77 1.06 0.81 0.73 1.31 1.03 1.28 1.40 0.96 1.00 1.15 1.13 
572 KKKKASVA 0.78 1.23 1.39 1.21 0.58 0.63 1.10 1.26 1.76 1.41 0.55 0.58 
573 LRRASLG 1.69 2.01 1.44 1.26 1.75 1.80 1.69 1.73 1.18 1.19 1.74 1.67 
574 YKNDYYRKR 1.14 1.38 1.17 0.95 1.34 1.12 1.53 1.63 1.16 1.13 1.12 1.09 
575 SSEITTKDL 0.76 0.38 0.75 0.48 0.61 0.69 0.58 0.53 0.91 0.66 0.66 0.76 
576 PLSRTLSVS 0.61 0.42 0.86 1.26 1.09 0.79 0.67 0.73 0.79 0.90 1.07 0.96 
577 LRRASLRG 3.26 1.92 3.03 4.09 4.21 3.70 2.30 3.38 2.33 2.73 4.74 4.46 
578 TEGQYELQP 0.90 0.62 1.15 0.90 1.35 0.94 0.93 1.16 1.20 1.18 1.16 1.00 
579 TSPSSSPAS 0.39 0.32 0.48 0.28 0.48 0.49 0.59 0.47 0.45 0.53 0.35 0.41 
580 PPSAYGSVK 0.61 0.41 0.79 0.61 0.73 0.64 0.99 1.12 0.75 0.87 0.69 0.53 
581 RTKRSGSV 2.39 1.73 2.12 1.82 3.55 2.96 2.07 2.70 1.70 1.91 3.25 3.08 
582 KRFGSKAHM 1.64 1.41 2.07 1.83 1.74 1.69 1.63 1.60 2.06 2.05 1.94 2.86 
583 LNDSSEEED 0.66 0.53 1.08 0.95 0.98 0.58 0.87 0.88 1.36 1.39 0.64 0.75 
584 QRATSNVFA 0.53 0.43 0.59 0.57 0.84 0.60 0.52 0.70 0.86 0.72 0.52 0.59 
585 SRSRTPSLP 1.71 1.88 1.24 1.07 2.23 2.46 2.00 1.75 1.07 1.21 2.07 2.18 
586 KRPSARAKA 1.61 1.95 1.97 1.67 2.74 2.49 1.88 1.76 2.46 2.00 2.63 2.57 
587 LRAPSWIDT 0.60 0.41 0.71 0.52 0.66 0.73 0.79 0.77 0.91 0.93 0.59 0.43 
588 QRRTSVSGE 0.45 0.35 0.44 0.51 0.83 0.73 0.76 0.60 0.45 0.51 0.79 0.59 
589 HATPSPPVD 0.51 0.59 0.32 0.48 0.56 0.35 0.54 0.25 0.44 0.41 0.33 0.43 
590 KRPSQRAKA 2.45 2.90 1.17 1.81 0.58 0.56 1.61 1.49 1.12 1.28 0.44 0.49 
591 EDAESEDEE 2.80 2.95 2.28 2.00 0.72 0.55 1.26 1.23 1.28 1.71 0.38 0.37 
592 ENAEYLRVA 1.03 1.10 0.93 0.81 0.71 0.48 0.82 0.55 0.69 0.78 0.45 0.50 
593 HKRKSSQAL 1.61 1.59 1.12 0.97 0.76 0.48 1.48 1.93 1.05 1.66 0.34 2.30 
594 LAYESHESL 0.98 0.87 0.76 0.87 0.83 0.51 0.80 0.39 0.82 0.57 0.44 0.52 
595 PYKFPSSPLRIPGZ 0.49 0.46 0.52 0.62 0.72 0.50 0.61 0.34 0.67 0.28 0.36 0.44 
596 GGVDYKNIH 0.61 0.73 0.32 0.39 0.38 0.50 0.89 0.38 0.45 0.55 0.36 0.46 
597 ALRPSTSRS 1.91 2.27 0.93 0.99 0.53 0.58 1.28 1.20 0.79 0.97 0.40 0.54 
598 DEAATKTQT 0.85 0.81 0.48 0.81 0.62 0.38 0.62 0.39 0.61 0.56 0.37 0.50 
599 FARKSTRRS 2.57 2.67 2.15 2.45 0.71 0.73 1.86 2.29 1.70 2.06 0.57 0.63 
600 GLGESRKDK 1.17 1.35 0.62 0.87 0.78 0.61 1.34 0.94 0.67 0.95 0.44 0.71 
601 DTHRTPSRS 1.34 1.50 0.84 0.85 0.74 0.72 1.18 1.04 0.85 1.09 0.45 0.64 
602 EKESSNDST 0.47 0.45 0.54 0.42 0.49 0.53 0.72 0.25 0.58 0.37 0.32 0.77 
603 RRAISGDLT 0.57 0.82 0.40 0.33 0.50 0.49 0.88 0.50 0.56 0.40 0.36 0.36 
604 SAYRSVDEV 0.92 0.99 0.68 0.77 0.40 0.41 0.76 0.50 1.13 0.47 0.38 0.44 
605 NTVSTSLGH 1.10 1.33 0.70 1.07 0.57 0.46 0.98 0.99 0.99 0.92 0.38 0.42 
606 RASLG 1.32 1.60 0.80 0.94 0.65 0.48 1.21 1.06 0.77 0.89 0.35 0.50 
607 AKDASKRGR 1.79 2.10 1.44 1.39 0.63 0.84 1.49 1.65 1.23 1.63 0.52 0.71 
608 DDEASTTVS 0.87 0.61 0.88 0.75 0.58 0.53 0.78 0.41 0.74 0.61 0.40 0.54 
609 ETAESSQAE 0.50 0.42 0.70 0.48 0.60 0.56 0.71 0.24 0.77 0.36 0.30 0.46 
610 YTRFSLARQ 1.66 2.30 1.03 1.13 0.46 0.57 1.31 1.22 0.73 0.75 0.33 0.46 
611 SPKQSPSSS 0.56 0.50 0.35 0.36 0.31 0.51 0.73 0.38 0.42 0.44 0.37 0.46 
612 RKRSRKE 0.65 0.54 0.37 0.49 0.53 0.57 0.50 0.25 0.36 0.44 0.54 0.63 
613 RPPGFSPFR 1.36 1.92 0.74 0.91 0.73 0.62 1.13 1.49 0.79 1.02 0.47 0.52 
614 SARVYENVG 0.54 0.65 0.64 0.49 0.54 1.27 0.72 0.41 0.72 0.51 0.51 0.44 
615 NRSASEPSL 0.46 0.39 0.42 0.58 0.69 0.54 0.70 0.23 0.50 0.43 0.50 0.52 
616 KGYSLG 0.68 1.02 0.49 0.64 0.57 0.46 1.08 0.72 0.59 0.87 0.27 0.45 
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617 SSSSSPKAE 0.55 0.59 0.38 0.54 0.49 0.49 0.88 0.30 0.43 0.44 0.34 0.55 
618 TKKTSFVNF 1.29 1.22 1.15 1.21 0.50 0.47 1.41 1.21 1.07 1.18 0.31 0.47 
619 VEPLTPSGE 0.61 0.55 0.60 0.53 0.48 0.51 0.57 0.23 0.71 0.48 0.44 0.73 
620 YRLPSNVDQ 0.64 0.59 0.43 0.36 0.52 0.56 0.64 0.33 0.45 0.36 0.36 0.48 
621 SPAISIHEI 0.62 0.55 0.78 0.58 0.58 0.52 0.70 0.37 0.54 0.50 0.31 0.49 
622 RKQISVR 0.53 0.76 0.61 0.59 0.58 0.69 0.86 0.52 0.59 0.68 0.42 0.44 
623 VGWPTVRER 1.25 2.06 1.02 0.97 0.52 0.71 1.19 1.10 0.99 1.01 0.40 0.55 
624 QTYRSFHDL 1.46 2.14 1.38 1.46 0.51 0.45 1.40 1.05 1.10 1.06 0.33 0.63 
625 LRRASLGAA 2.66 3.07 2.32 3.08 0.68 0.83 1.65 1.14 1.42 1.46 0.46 0.80 
626 PRKGSPKRG 0.81 0.96 0.46 0.64 0.53 0.58 0.85 0.35 0.65 0.51 0.48 0.49 
627 SSPASLSRA 1.50 1.56 0.51 0.63 0.54 0.40 1.11 0.75 0.63 0.77 0.43 0.55 
628 TKAASEKKS 0.53 0.49 0.41 0.50 0.65 0.50 0.67 0.27 1.19 0.57 0.35 0.65 
629 LRRPSDQEV 0.42 0.52 0.53 0.76 0.52 0.47 0.78 0.47 0.56 0.43 0.37 0.75 
630 PSAPSPQPK 0.39 0.46 0.41 0.53 0.54 0.69 0.71 0.47 0.50 0.43 0.39 0.63 
631 KAKVTGRWK 1.98 2.67 1.97 1.98 0.63 0.63 1.95 2.03 2.52 2.33 0.66 0.85 
632 KRPTQRAKY 2.51 3.53 2.67 3.42 0.98 0.88 2.32 2.30 2.81 2.87 0.74 1.07 
633 PLSRTLSVRSL 1.49 2.24 1.62 2.37 0.62 0.58 1.24 0.89 1.07 1.03 0.44 0.64 
634 QSPGSPLEE 0.50 0.76 0.79 0.68 0.44 0.58 0.64 0.46 0.72 0.69 0.37 0.58 
635 KGGSYSQAA 0.64 1.15 0.52 0.66 0.59 0.61 0.80 0.88 0.87 0.61 0.53 0.61 
636 KRRRSSKDT 1.32 1.41 1.42 1.47 0.81 0.80 1.20 1.54 1.79 1.66 0.97 1.01 
637 KAAQISVRGL 0.70 0.67 0.83 0.87 0.84 0.74 1.08 0.78 0.86 0.88 0.88 0.93 
638 HRTPSRSFG 2.21 2.89 1.05 1.58 0.84 0.62 1.88 1.54 1.23 1.47 0.56 0.60 
639 LSGFSFKKN 1.08 1.21 1.03 1.48 0.83 1.10 1.22 0.89 1.20 1.13 0.51 0.52 
640 EEEEYMPME 0.60 0.49 0.67 0.64 0.90 0.67 0.75 0.30 0.83 0.54 0.40 0.46 
641 EQFSTVKGV 0.45 0.36 0.38 0.61 0.55 0.64 0.65 0.28 0.53 0.45 0.54 0.37 
642 IDKISRIGF 0.46 0.54 0.69 0.95 0.44 0.51 0.91 0.54 0.78 0.90 0.41 0.43 
643 MHRQETVDA 0.36 0.36 0.55 0.62 0.28 0.47 0.62 0.21 0.61 0.32 0.37 0.41 
644 PYKFPSSPLRIPGZ 0.35 0.32 0.44 0.53 0.43 0.48 0.60 0.25 0.55 0.42 0.46 0.43 
645 GNHTYQEIA 0.44 0.67 0.51 0.64 0.70 0.59 0.84 0.38 0.66 0.40 0.36 0.39 
646 APVASPAAP 0.45 0.32 0.43 0.51 0.69 0.61 0.71 0.34 0.54 0.33 0.46 0.40 
647 DGNNSDEES 0.63 0.50 0.93 0.79 0.69 0.56 0.64 0.40 1.00 0.77 0.46 0.52 
648 FMTEYVVTR 0.53 0.49 0.69 0.75 0.42 0.63 1.03 0.57 0.91 1.64 0.56 0.40 
649 GRGLSLSRF 1.53 1.61 1.37 2.30 0.62 0.74 1.71 1.05 1.29 1.62 0.75 0.67 
650 EDTLSDSDD 1.53 1.64 1.91 2.95 0.51 0.72 1.07 0.68 1.54 1.97 0.69 0.53 
651 ENQASEEED 0.52 0.60 0.97 0.93 0.47 0.48 0.78 0.45 1.33 1.18 0.41 0.44 
652 RRPTSPVSR 2.00 2.99 1.34 1.51 0.90 0.71 1.73 1.29 1.13 1.42 0.63 0.63 
653 SFMDSSGLG 0.58 0.63 0.65 0.56 0.71 0.46 0.80 0.44 0.93 0.48 0.25 0.59 
654 QKRPSQRSK 1.66 2.16 1.31 1.82 0.84 0.98 1.57 1.42 1.63 1.74 0.84 0.78 
655 SDEEH 0.48 0.44 0.57 0.50 0.43 0.55 0.68 0.43 0.99 0.49 0.56 0.48 
656 APLTPGGRR 1.46 1.25 1.15 1.50 0.45 0.73 1.39 1.45 1.49 1.52 0.57 0.69 
657 DEPSTPYHS 0.52 0.48 0.66 0.85 0.49 0.45 0.69 0.42 0.64 0.59 0.53 0.59 
658 FGSRSLYGL 0.94 1.20 0.86 1.12 0.56 0.49 1.19 0.83 0.66 0.99 0.51 0.54 
659 RDPVTENAV 0.60 0.87 0.53 0.86 0.59 0.49 0.78 0.40 0.53 0.55 0.38 0.60 
660 AVRRSDRA 1.16 1.86 0.83 1.09 0.65 0.49 1.18 0.87 1.10 1.29 0.52 0.70 
661 VKRGSGL 0.95 1.46 0.92 1.11 0.39 0.54 1.14 0.92 1.03 1.17 0.49 0.53 
662 RRKDTPALH 0.70 0.85 0.64 0.76 0.36 0.47 1.05 0.67 1.03 0.92 0.64 0.53 
663 SEITTKDLK 0.52 0.36 0.58 0.69 0.52 0.60 0.56 0.40 0.59 0.55 0.61 0.40 
664 PNVSYIASR 0.81 0.72 0.85 1.07 0.53 0.53 1.14 0.95 0.92 1.19 0.47 0.59 
665 RRDSV 1.01 1.28 0.82 1.41 0.54 0.59 1.26 0.96 0.85 1.02 0.66 0.58 
666 STRRSIRLP 3.48 4.07 3.36 4.63 1.48 0.80 3.19 2.94 2.43 2.64 0.80 0.95 
667 TPQVSDTMR 0.55 0.77 0.48 0.96 0.48 0.62 0.68 0.62 0.66 0.60 0.42 0.68 
668 VNATYVNVK 0.49 0.52 0.52 0.78 0.46 0.42 0.56 0.34 0.64 0.54 0.45 0.59 
669 RAAHSIKGG 1.25 1.27 0.95 1.35 0.46 0.54 1.29 1.34 1.03 1.21 0.53 0.44 
670 SPSLSRHSS 2.10 1.97 1.60 2.15 0.88 0.87 1.59 1.35 1.41 1.55 0.84 0.69 
671 RTPPPSG 0.78 0.91 0.58 0.74 0.76 0.68 1.04 0.77 0.62 0.87 0.62 0.52 
672 VRKRTLRRL 2.18 2.56 2.30 2.60 0.71 0.76 1.79 2.33 2.28 2.57 0.69 0.64 
673 SRKGSGFGH 1.44 1.87 1.32 2.11 0.54 0.61 1.27 1.25 1.45 1.39 0.54 0.60 
674 LSGESDLEI 0.84 1.18 0.81 1.37 0.63 0.66 0.84 0.54 1.20 0.96 0.51 0.72 
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675 PSQRSKYLA 0.54 0.66 0.63 0.73 0.65 0.45 0.64 0.53 0.82 0.62 0.48 0.52 
676 STDEYLDLS 1.82 1.96 1.90 2.81 0.88 0.92 0.78 0.78 1.18 1.34 0.66 0.73 
677 TNHIYSNLA 0.74 0.64 0.85 1.01 0.76 0.70 0.68 0.72 0.76 0.66 0.61 0.65 
678 LSRHSSPHQ 1.18 1.24 1.17 1.61 0.78 0.85 1.18 1.12 1.40 1.26 0.71 0.63 
679 PTRHSRVAE 0.68 0.88 0.70 0.68 0.72 0.65 0.87 0.84 0.79 0.60 0.78 0.55 
680 KISITSRKA 1.10 1.41 1.64 1.54 1.02 0.95 1.36 1.12 1.78 1.61 1.02 1.20 
681 KSKISASRK 1.61 2.23 1.60 2.13 0.69 0.59 1.73 1.77 2.49 2.20 0.53 0.93 
682 KRKQISVGGL 0.70 1.21 0.96 1.27 0.62 0.81 1.17 1.08 1.24 1.47 0.50 0.65 
683 SRALSRQLS 2.22 3.15 2.16 2.94 0.75 0.79 1.89 1.78 1.43 1.95 0.74 0.64 
684 KKKFSFKKP 1.80 2.17 2.79 2.97 1.03 0.87 1.88 3.08 3.74 3.41 0.69 0.63 
685 KTRSSRAGL 2.00 2.19 2.14 3.16 0.79 0.81 1.62 1.97 2.26 2.39 0.80 0.71 
686 PAPGSPEPP 0.63 0.83 0.71 0.89 0.70 0.95 0.82 0.56 0.74 0.84 0.60 0.60 
687 IGSESTEDQ 0.38 0.57 1.02 0.72 0.53 0.50 0.64 0.23 1.05 0.99 0.55 0.46 
688 MRRNSFTPL 0.66 0.79 0.85 0.99 0.59 0.82 1.04 0.81 0.61 0.89 0.72 0.80 
689 EEQEYVQTV 0.55 0.44 0.87 0.83 0.52 0.54 0.71 0.45 0.86 1.05 0.57 0.42 
690 ERRVSNAGG 0.36 0.35 0.51 0.47 0.60 0.65 0.86 0.52 0.59 0.75 0.49 0.69 
691 IREESPPHS 0.21 0.24 0.42 0.35 0.46 0.51 0.64 0.27 0.60 0.60 0.37 0.47 
692 NDSVYANWM 0.73 0.67 1.20 1.13 1.08 0.94 1.09 1.02 0.98 1.51 0.97 0.72 
693 PYKFPSSPLRIPGZ 0.33 0.34 0.42 0.41 0.59 0.50 0.64 0.26 0.56 0.72 0.39 0.45 
694 GRRESLTSF 1.09 1.59 1.14 1.60 1.15 1.16 1.50 1.26 0.89 1.35 1.40 1.21 
695 ARVFSVLRE 0.74 1.01 1.15 1.20 0.91 0.99 1.27 1.33 0.95 1.44 1.10 1.06 
696 DLPLSPSAF 0.67 0.77 1.08 1.03 0.78 0.86 0.83 0.62 0.84 1.15 0.85 0.68 
697 GDKKSKKAK 0.85 0.99 0.93 0.68 0.77 0.80 1.45 1.58 1.26 1.39 0.68 0.82 
698 GSDVSFNEE 0.53 0.55 1.03 0.97 1.11 0.97 0.82 0.65 1.15 1.45 0.87 0.74 
699 EEKGSPLNA 0.23 0.23 0.39 0.38 0.50 0.43 0.59 0.30 0.58 0.64 0.37 0.45 
700 ERQKTQTKL 0.56 0.75 0.65 0.50 2.17 1.08 1.05 1.20 0.89 1.25 0.97 1.29 
701 RRRSSKDTS 0.77 1.12 0.86 1.06 0.81 0.93 1.18 0.86 0.93 1.03 0.92 1.04 
702 SKAGSLGNI 0.41 0.46 0.49 0.52 0.36 0.53 0.80 0.51 0.64 0.59 0.55 0.67 
703 MSGDEM 0.35 0.39 0.57 0.49 0.52 0.37 0.63 0.30 0.54 0.62 0.48 0.48 
704 AAATTPAAE 0.35 0.32 0.34 0.29 0.55 0.38 0.61 0.29 0.54 0.51 0.36 0.44 
705 ARKKSSAQL 0.27 0.25 0.50 0.43 1.24 1.37 0.72 0.43 0.67 0.80 1.30 1.19 
706 DKVTSPTKV 0.37 0.34 0.46 0.36 0.65 0.53 1.04 0.55 0.63 0.75 0.50 0.53 
707 FRRFTPDSL 0.45 0.55 0.66 0.46 0.64 0.59 1.11 0.87 0.79 1.12 0.57 0.60 
708 RFTDTRKDE 0.51 0.45 0.52 0.60 0.43 0.49 0.60 0.30 0.71 0.47 0.65 0.62 
709 RKISASEA 0.46 0.51 0.52 0.43 0.55 0.59 0.82 0.31 0.61 0.59 0.67 0.65 
710 LARASLG 0.59 0.74 0.68 0.87 0.89 0.86 0.92 0.69 0.85 1.12 0.95 1.02 
711 RRRLSSLRA 0.79 0.82 0.88 1.36 0.67 0.61 0.93 0.74 0.94 1.20 0.66 0.96 
712 SGYISSLEY 0.95 1.17 1.33 1.85 1.50 1.52 0.91 0.71 1.00 1.46 1.57 1.18 
713 LARNSI 0.38 0.24 0.50 0.48 0.69 0.51 0.63 0.36 0.68 0.86 0.39 0.44 
714 TIAVG 0.32 0.34 0.48 0.46 0.60 0.53 0.58 0.47 0.61 0.74 0.39 0.36 
715 TADISEDEE 0.93 1.12 1.40 1.28 0.84 0.90 1.03 0.78 1.41 1.43 1.04 0.87 
716 TRQTSVSGQ 0.43 0.64 0.63 0.53 0.50 0.62 0.75 0.40 0.81 0.67 0.73 0.62 
717 VSEEYLDLR 1.00 1.11 1.21 1.86 1.21 1.44 0.76 0.65 0.73 1.04 1.24 0.99 
718 REQESSGEE 0.40 0.49 0.55 0.65 0.63 0.52 0.60 0.47 0.74 0.72 0.39 0.83 
719 GTKRSGSV 1.04 1.22 0.99 1.55 1.34 1.28 1.30 1.34 1.05 1.48 1.52 1.31 
720 NRLQTMKEE 0.47 0.26 0.52 0.43 0.56 0.70 0.71 0.38 0.70 0.65 0.69 0.61 
721 VVELSGESD 0.68 0.61 1.25 1.08 0.67 0.61 0.87 0.71 1.53 1.59 0.66 0.70 
722 SRRPSRATW 1.89 2.39 1.85 2.55 2.46 2.93 1.63 1.53 2.32 2.30 2.96 2.83 
723 PASQTPNKT 0.39 0.68 0.62 0.63 0.58 0.73 0.64 0.23 0.61 0.62 0.61 0.57 
724 QDPVSPSLV 0.41 0.52 0.71 0.85 0.55 0.71 0.73 0.40 0.84 0.78 0.64 0.85 
725 STTVSKTET 0.35 0.39 0.53 0.42 0.55 0.58 0.64 0.42 0.52 0.57 0.79 0.70 
726 TRKISASEF 0.36 0.42 0.60 0.61 0.62 0.64 0.59 0.44 0.59 0.65 0.44 0.64 
727 PGPQSPGSP 0.39 0.24 0.48 0.45 0.51 0.54 0.66 0.26 0.59 0.77 0.53 0.50 
728 KQGSGRGL 1.13 1.48 0.89 1.37 1.85 1.75 1.43 1.27 1.12 1.31 2.40 2.14 
729 KKSWSRWTL 1.33 1.77 1.72 1.68 2.57 2.55 1.88 1.75 2.43 2.12 2.62 2.51 
730 LASSSKEEN 0.42 0.59 0.56 0.64 0.66 0.89 0.61 0.31 0.72 0.79 0.82 0.74 
731 PLRRTLSVA 0.67 0.86 1.14 1.50 0.67 0.85 0.69 0.51 1.13 0.85 0.84 0.74 
732 SRPSSNRSY 1.91 2.88 1.73 2.04 3.13 3.89 1.46 2.03 1.59 2.71 4.27 4.48 
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733 KNDYYRKRG 0.99 1.08 1.05 1.27 1.57 1.61 1.23 1.37 1.46 1.78 1.82 1.84 
734 LIEDAEYTA 0.54 0.53 0.75 0.89 1.08 1.03 0.74 0.50 0.98 1.19 1.36 0.98 
735 QKAQTERKS 0.61 0.90 0.95 0.75 0.96 0.96 1.11 1.14 1.10 1.52 1.06 0.98 
736 ISTESQPNG 0.31 0.20 0.38 0.29 0.57 0.39 0.62 0.33 0.46 0.51 0.30 0.43 
737 NGNNYVYID 0.34 0.43 0.59 0.60 1.24 1.03 0.62 0.46 0.79 0.74 0.83 0.73 
738 EIKKSWSRW 0.60 0.91 0.81 1.13 0.93 0.77 1.15 1.22 1.02 1.12 0.62 0.69 
739 ESPASDEAE 0.43 0.42 0.89 0.60 0.73 0.48 0.55 0.59 1.13 1.06 0.43 0.45 
740 KRKSSQALV 1.09 0.92 1.17 1.05 0.90 1.07 1.37 1.38 1.41 1.44 0.60 0.71 
741 NNMPSSDDG 0.29 0.22 0.30 0.33 0.40 0.57 0.53 0.28 0.37 0.57 0.33 0.36 
742 PYKFPSSPLRIPGZ 0.30 0.26 0.28 0.33 0.30 0.52 0.59 0.40 2.31 0.42 0.41 0.41 
743 GSPGTPGSR 0.53 0.77 0.50 0.49 0.78 0.70 1.24 0.92 0.56 0.93 0.59 0.81 
744 AVVRTPPKS 1.00 1.13 0.91 0.80 1.05 1.07 1.39 1.10 1.12 2.48 0.89 0.97 
745 DRKLSTKEA 0.36 0.46 0.57 0.46 0.73 0.61 1.01 0.73 0.59 0.71 0.38 0.54 
746 GGIRSLNVA 0.47 0.33 0.54 0.45 0.94 1.22 0.67 0.57 0.56 0.66 0.46 0.78 
747 GTRLSLARM 1.00 1.08 1.28 1.16 1.59 1.87 1.36 1.47 0.94 1.25 1.42 1.34 
748 EGNKSPAPK 0.35 0.42 0.38 0.39 0.58 0.72 0.95 0.73 0.28 0.56 0.45 0.31 
749 ESHESMESY 0.40 0.46 0.60 0.46 0.47 0.50 0.86 0.67 0.83 0.85 0.45 0.25 
750 RVRISADAM 0.38 0.32 0.64 0.35 0.56 0.41 0.69 0.35 0.50 0.62 0.34 0.47 
751 SNDDSDDDD 0.66 0.73 1.26 1.04 0.87 0.70 1.07 0.81 1.16 1.40 0.60 0.58 
752 RRPTPA 0.91 1.62 1.11 0.74 1.58 1.14 1.31 1.25 0.95 1.17 1.03 1.16 
753 AEGSSNVFS 0.39 0.38 0.76 0.52 0.83 0.52 0.67 0.52 0.59 0.82 0.36 0.35 
754 AVADSESED 0.76 0.60 1.20 1.07 1.22 0.90 1.02 1.08 0.92 1.32 1.11 0.74 
755 DNPDYQQDF 1.30 1.26 1.33 1.02 1.29 1.21 0.99 0.97 0.99 1.24 1.11 0.94 
756 GDVKYADIE 0.52 0.50 0.75 0.57 0.77 0.81 0.73 0.48 0.60 0.87 0.69 0.58 
757 RLQDYEEKT 0.61 0.42 0.71 0.78 0.61 0.54 0.70 0.43 0.87 0.88 0.42 0.45 
758 FKKSFKL 1.39 0.97 1.25 1.29 0.71 0.56 1.35 1.14 1.89 1.51 0.34 0.51 
759 LRRPSLG 1.68 1.94 1.97 2.06 1.25 1.15 1.88 1.56 1.31 1.32 0.82 1.15 
760 RRVRSQEPG 0.64 0.91 0.78 0.56 0.79 0.56 1.34 1.06 0.84 1.07 0.51 0.51 
761 SLDDSGSAM 0.46 0.49 0.57 0.51 0.63 0.66 0.70 0.47 0.74 0.78 0.40 0.40 
762 RRASVA 1.55 2.28 1.65 1.32 1.62 1.80 2.01 1.59 1.28 1.35 1.68 1.45 
763 ADDEYAPKQ 0.60 0.61 0.77 0.76 0.77 0.68 0.81 0.65 0.76 1.03 0.71 0.69 
764 TESQYQQQP 0.48 0.38 0.68 0.63 0.47 0.42 0.61 0.47 1.02 1.02 0.39 0.47 
765 TVKSSKGGP 0.68 0.82 0.57 0.60 0.77 0.66 1.16 0.75 1.04 1.21 0.55 0.53 
766 WTSDSAGEE 0.81 0.80 1.17 1.16 0.79 0.58 1.04 0.84 1.32 1.62 0.37 0.57 
767 RKAASVIAK 1.15 0.97 1.35 1.25 0.95 0.67 1.41 1.17 1.24 1.41 0.60 0.74 
768 LRRASLDG 0.44 0.48 0.51 0.75 0.68 0.39 0.79 0.36 0.61 0.91 0.32 0.42 
769 LRRASGG 0.80 1.09 0.68 0.62 0.66 0.67 1.33 1.14 0.88 1.13 0.66 0.57 
770 YHTTSHPGT 0.57 0.79 0.73 0.61 0.60 0.46 1.35 1.06 0.73 1.19 0.68 0.49 
771 SSEESITRI 0.59 0.77 0.89 0.84 0.74 0.78 0.76 0.50 1.11 1.27 0.58 0.52 
772 PLAGSPVIA 0.47 0.44 0.59 0.71 0.81 0.56 0.79 0.68 1.11 1.42 0.45 1.01 
773 LGSPLRRR 2.73 3.04 3.75 4.53 2.73 2.82 2.86 3.74 4.67 4.14 2.78 2.61 
774 TEDQYSLVE 1.35 1.48 1.47 1.74 1.12 1.08 1.12 1.21 1.50 1.50 1.10 0.96 
775 TRTYSLGSA 0.86 1.19 0.89 0.75 0.65 0.42 1.51 1.01 0.99 1.14 0.38 0.44 
776 PPSAYATVK 0.58 0.78 0.65 0.52 0.83 0.42 1.25 0.91 0.85 1.03 0.59 0.54 
777 RTKRSGSV 2.28 3.10 2.00 1.94 2.81 2.72 2.93 2.32 1.97 1.76 3.18 2.41 
778 KREASLDNQ 0.39 0.47 0.40 0.41 0.68 0.59 0.64 0.36 0.65 0.86 0.57 0.59 
779 LMDKYHVDN 0.45 0.37 0.43 0.51 0.64 0.46 0.71 0.39 0.66 0.92 0.40 0.50 
780 QQGMTVYGL 0.67 0.94 0.84 0.89 0.79 0.74 1.00 0.99 0.97 1.27 0.54 0.56 
781 SRSRSRSRS 3.46 3.82 4.48 4.67 3.41 3.55 3.71 3.91 4.36 3.71 3.26 3.18 
782 KRNSSPPPS 1.00 1.35 1.04 0.96 1.14 1.00 1.54 1.89 1.18 1.50 1.15 0.91 
783 LQRYSSDPT 0.32 0.52 0.34 0.43 0.69 0.30 0.73 0.61 0.47 1.19 0.25 0.51 
784 QRRTSLTGS 1.19 1.79 0.83 0.92 1.39 1.21 1.72 1.42 0.83 1.34 1.21 1.02 
785 GVRQSRASD 1.03 1.56 0.45 0.55 0.46 0.75 1.01 0.75 0.58 0.62 0.52 0.75 
786 KRPSNRAKA 1.95 2.78 0.99 1.18 0.91 1.54 1.64 1.41 1.22 1.15 1.21 1.62 
787 EAVTSPRFI 0.78 0.81 0.37 0.65 0.53 0.56 0.88 0.49 0.54 0.55 0.57 0.76 
788 EMTGYVATR 0.55 0.59 0.36 0.56 0.44 0.60 0.88 0.35 0.36 0.54 0.49 0.77 
789 HKIKSGAEA 0.60 1.08 0.41 0.45 0.46 0.72 0.94 1.11 0.51 0.81 0.51 0.85 
790 LARRSTTDA 0.52 0.87 0.49 0.58 0.50 0.73 0.93 0.64 0.60 0.57 0.55 0.83 
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791 PYKFPSSPLRIPGZ 0.35 0.37 0.37 0.43 0.57 0.59 0.63 0.49 0.58 0.38 0.48 0.79 
792 GGTGTPNKE 0.46 0.61 0.24 0.54 0.50 0.51 0.63 0.58 0.31 0.31 0.50 0.66 
793 ALGISYGRK 1.71 2.19 1.23 1.55 0.76 1.32 1.35 1.76 1.05 1.31 0.99 1.28 
794 DDSGSAMSG 0.42 0.56 0.35 0.58 0.56 0.73 0.72 0.47 0.46 0.37 0.52 0.87 
795 EYVQTVKSS 0.52 0.61 0.39 0.55 0.52 0.84 0.70 0.54 0.49 0.49 0.60 1.22 
796 GKTDYMGEA 0.42 0.66 0.42 0.62 0.55 0.69 0.64 0.64 0.79 0.54 0.61 1.12 
797 DSTYYKASK 1.03 1.42 1.22 1.16 0.65 0.76 1.16 1.06 0.91 0.91 0.63 1.43 
798 EKEISDDEA 0.52 0.58 0.88 0.90 0.49 0.59 0.63 0.43 0.95 0.79 0.56 0.90 
799 RRADSLQKN 1.05 1.56 0.42 0.74 0.62 0.70 1.06 1.01 0.77 0.58 0.65 0.80 
800 SAYGSVKAY 0.62 0.72 0.38 0.71 0.50 0.65 0.76 0.60 0.43 0.54 0.62 0.93 
801 NTSSSPQPK 0.81 1.25 0.50 0.59 0.66 1.00 0.90 0.81 0.54 0.60 0.85 1.21 
802 GSRRR 2.33 3.42 2.04 2.20 2.24 3.01 2.11 3.15 2.12 2.70 2.14 3.45 
803 AKAKTTKKR 1.79 2.78 2.13 2.32 2.39 2.44 2.21 3.11 2.53 2.79 1.79 2.52 
804 DDAYSDTET 2.29 3.87 1.67 2.73 2.47 2.27 1.34 1.50 1.72 1.65 0.89 2.85 
805 ESVDYVPML 0.96 1.35 1.12 1.21 0.92 1.04 0.73 0.78 0.95 1.04 0.80 1.52 
806 YSTDYYREG 2.26 3.46 0.81 1.53 0.63 1.81 1.21 1.17 0.97 0.92 0.83 1.07 
807 SPKKSPRKA 1.99 2.94 1.11 1.52 0.83 1.43 1.82 1.91 1.20 1.41 1.06 1.55 
808 RKRSRKA 1.73 2.15 1.33 1.38 2.47 3.90 1.63 1.58 1.56 1.61 2.30 4.12 
809 RPPASPSPQ 0.53 0.94 0.40 0.72 0.69 1.24 0.73 0.76 0.58 0.58 1.05 1.43 
810 SARLSAKPA 0.86 1.54 0.55 0.97 0.99 1.34 1.00 1.06 0.86 0.89 1.07 1.59 
811 NRQSSQARV 1.29 1.99 0.84 1.07 1.21 1.66 1.19 1.23 0.89 1.14 1.11 1.94 
812 KEAKSD 0.29 0.57 0.50 0.50 0.53 0.91 0.60 0.38 0.59 0.64 0.70 1.01 
813 SSSNTIRRP 3.18 4.61 1.40 1.85 1.86 3.40 2.06 2.25 0.84 1.02 2.81 3.61 
814 TKKQSFKQT 1.23 2.07 0.71 1.38 0.68 0.99 0.99 1.38 0.92 0.89 1.02 1.19 
815 VDSAYEVIK 1.37 2.01 0.67 1.27 1.03 1.58 0.81 0.90 0.87 0.72 1.08 1.84 
816 YRKSSLKSR 1.41 2.98 1.58 2.95 1.89 2.46 1.45 1.78 1.77 1.72 2.21 2.97 
817 SNVSSTGSI 0.57 0.82 0.42 0.93 0.79 1.53 0.65 0.90 0.67 0.54 1.27 1.97 
818 RARSRKE 1.52 2.11 1.28 1.25 1.07 1.74 1.39 1.77 1.46 1.53 1.43 1.71 
819 VGPGYLGSG 0.48 0.72 0.69 0.52 0.37 0.90 0.60 0.60 0.77 0.56 0.78 1.01 
820 QTVKSSKGG 1.24 1.66 0.70 0.91 0.58 0.96 1.18 1.22 0.99 0.74 0.91 1.22 
821 LRMFSFKAP 1.39 1.90 0.70 1.66 0.67 0.98 1.20 1.08 0.97 0.79 0.91 1.30 
822 PRHLSNVSS 0.66 0.95 0.40 0.62 0.68 0.93 0.64 0.75 0.82 0.43 1.14 1.08 
823 SSNEYMDMK 0.63 0.91 0.54 0.70 1.15 1.27 0.66 0.82 3.38 0.51 1.42 1.56 
824 THYGSLPQK 0.92 1.38 0.55 0.89 0.67 1.49 0.86 0.89 0.95 0.74 1.22 1.67 
825 LRRPSDQAV 0.84 1.19 0.50 0.76 0.62 1.25 1.00 0.81 0.71 0.67 0.97 1.21 
826 PRRNSRASL 0.65 1.11 0.55 0.78 0.39 0.93 0.68 0.85 0.61 0.68 0.58 1.02 
827 KAKTTKKRP 2.64 3.04 2.59 2.60 1.73 2.19 2.38 2.57 2.59 2.40 1.98 2.26 
828 KRPSGRAKA 2.69 3.13 1.45 2.49 1.46 2.45 1.88 2.03 2.21 2.18 1.84 2.42 
829 PLSKTLSVSSL 0.66 0.99 0.36 0.58 0.56 0.87 0.70 0.89 0.68 0.66 0.94 1.13 
830 QSGMTEYVA 0.82 1.06 0.50 1.14 0.54 0.89 0.62 0.86 0.87 0.74 0.99 1.22 
831 KGATSDEED 0.55 0.90 0.45 0.81 0.49 0.94 0.58 0.83 0.84 0.86 0.81 1.23 
832 KRRNSEFEI 0.90 1.92 0.90 1.45 0.59 1.24 1.07 1.32 1.06 1.18 0.96 1.50 
833 LTRRASFSAQ 2.32 3.03 1.89 3.61 0.75 1.67 1.42 1.98 1.34 1.56 1.24 2.09 
834 HRQETVEAL 0.30 0.43 0.41 0.45 0.47 0.55 0.65 0.59 0.91 0.52 0.50 0.59 
835 LRRFSLATM 1.42 1.58 0.87 1.49 1.02 1.16 1.12 0.89 0.94 0.78 1.62 1.81 
836 EEEAYGWMD 1.03 1.68 0.97 1.41 1.42 1.49 0.81 0.51 0.81 0.80 1.48 1.50 
837 EQESSGEED 0.49 0.57 0.68 0.86 0.66 0.76 0.59 0.65 0.97 0.85 0.59 0.70 
838 IAADSEAEQ 0.43 0.58 0.65 0.68 0.66 0.68 0.57 0.81 1.09 0.64 0.73 0.54 
839 MGEASGAQL 0.34 0.45 0.46 0.47 0.68 0.58 0.63 0.72 0.60 0.41 0.59 0.59 
840 PYKFPSSPLRIPGZ 0.42 0.48 0.38 0.48 0.75 0.59 0.63 0.74 0.70 0.58 0.57 0.53 
841 GNGDYMPMS 0.36 0.48 0.45 0.50 0.54 0.71 0.63 0.66 0.66 0.45 0.68 0.86 
842 APRYPGGRR 1.76 2.54 2.50 1.55 2.47 2.82 1.81 1.88 2.08 1.80 3.17 3.65 
843 DGNKSPAPK 0.47 0.64 0.56 0.54 0.66 0.80 0.79 0.58 0.59 0.49 0.73 0.96 
844 FMTEYVATR 0.40 0.47 0.46 0.69 0.73 0.86 0.82 0.68 0.46 0.65 0.96 0.85 
845 GRASSHSSQ 1.16 1.19 0.97 1.20 1.78 1.72 1.20 1.15 0.89 0.97 2.24 2.12 
846 EDSTYYKAS 1.06 1.09 1.29 1.56 1.47 1.59 1.08 1.10 1.08 1.44 1.85 1.51 
847 ENPQYFRQG 0.35 0.56 0.48 0.47 0.74 0.70 0.74 0.81 0.64 0.53 0.79 0.57 
848 RRPTPATVA 1.00 1.64 0.59 0.63 0.91 1.04 1.00 1.05 0.85 0.66 1.09 1.46 
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849 SFKLSGFSF 0.37 0.63 0.63 0.59 0.45 0.72 0.69 0.70 0.75 0.46 0.70 0.85 
850 QEKESERLA 0.32 0.52 0.40 0.49 0.48 0.71 0.62 0.69 0.64 0.55 0.70 0.83 
851 RRVSV 1.51 1.92 1.20 1.46 2.00 3.08 1.41 1.61 1.16 1.17 3.26 3.77 
852 APFTPGGRR 1.32 1.60 1.28 1.14 1.94 2.93 1.41 1.73 1.09 1.36 2.80 3.11 
853 DEKLSEILG 0.56 0.74 0.74 0.79 0.78 0.98 0.65 0.72 0.65 0.74 1.00 0.85 
854 FGHNTIDAV 0.41 0.47 0.57 0.62 0.83 0.79 0.65 0.89 0.65 0.43 0.76 0.70 
855 RDEEYGYEA 1.91 2.60 1.49 1.85 1.63 2.09 0.83 1.04 1.26 1.09 1.29 2.33 
856 AVRRSDAA 0.74 1.19 0.52 0.56 0.57 0.97 0.90 1.06 0.72 0.77 0.96 1.33 
857 TKRSGSV 0.75 1.21 0.74 1.09 1.17 1.53 0.94 1.15 0.83 1.15 1.39 1.72 
858 RRKATQVGE 0.43 0.48 0.44 0.47 0.56 0.86 0.63 0.82 0.56 0.44 0.73 0.95 
859 SEGDSESGE 0.79 0.89 0.99 1.42 0.70 1.21 0.76 0.80 0.91 0.96 1.13 1.11 
860 PLDRSSHAQ 0.51 0.58 0.71 0.62 0.74 0.96 0.64 0.68 0.61 0.67 0.93 0.92 
861 RRASS 1.14 1.77 1.12 1.25 1.73 2.03 1.30 1.35 1.11 1.16 2.35 2.48 
862 STPLSPTRI 0.93 1.47 0.66 0.77 1.02 1.88 1.07 1.06 0.92 0.96 1.47 2.33 
863 TPPLSPSRR 1.90 2.80 1.39 1.91 3.46 4.98 1.57 2.00 1.33 1.40 4.90 5.84 
864 VKRISGLIY 0.69 0.86 0.69 1.02 0.70 1.37 0.90 1.12 0.76 0.85 1.27 1.72 
865 RAAASRARQ 1.67 1.75 0.83 1.36 2.07 3.23 1.20 1.49 1.08 1.16 3.65 4.44 
866 SPRTPGGRR 1.58 2.36 1.54 1.50 4.08 5.18 1.76 2.47 1.82 1.71 4.51 4.91 
867 RRRRSVA 2.48 2.98 2.26 2.60 4.18 5.11 1.81 2.90 2.87 2.48 5.25 5.34 
868 VRFESIRLP 0.85 1.18 0.78 0.99 1.11 1.55 0.82 1.41 0.95 1.18 1.21 1.57 
869 SRKESYSVY 0.71 0.85 0.64 0.66 0.52 0.99 0.69 0.90 0.57 0.70 0.93 1.20 
870 LSELSRRRI 1.82 2.85 2.37 3.21 2.39 3.40 1.75 2.11 2.30 2.38 3.53 4.14 
871 PSPSSRVTV 0.70 0.83 0.59 0.69 0.85 1.13 0.75 0.99 1.10 0.83 2.02 1.25 
872 SSVPTPSPL 0.37 0.43 0.39 0.45 0.52 0.81 0.55 0.87 0.62 0.49 0.80 0.79 
873 TNEEYLDLS 0.86 1.36 0.83 1.40 0.88 1.44 0.65 0.95 0.80 1.05 1.23 1.52 
874 LSRFSWGAE 0.34 0.69 0.52 0.64 0.94 1.16 0.53 0.89 0.74 0.69 0.95 1.16 
875 PTKRSPTKR 0.64 1.02 0.68 1.02 1.11 1.42 0.94 1.12 0.89 1.03 1.10 1.04 
876 KISASRKLQ 1.56 2.07 1.20 1.59 1.61 2.80 1.36 1.60 1.51 1.67 2.34 3.04 
877 KSFGSPNRI 1.06 1.60 1.01 1.25 1.54 2.23 0.96 1.25 1.35 1.28 2.28 3.01 
878 KRKQISVAGL 0.83 1.18 1.09 1.25 1.02 1.41 1.00 1.34 1.30 1.49 1.16 1.31 
879 SQHSTPPKK 0.52 0.93 0.57 0.58 0.54 0.91 0.66 0.93 0.84 0.96 0.83 0.91 
880 KKIDSFASN 0.49 0.95 0.53 0.59 1.13 1.32 0.73 1.14 0.60 0.84 1.49 1.48 
881 KTETSQVAP 0.36 0.52 0.40 0.56 0.78 0.88 0.64 0.88 0.51 0.41 0.83 0.80 
882 PAAPSPGSS 0.46 0.66 0.59 0.78 0.87 1.18 0.65 0.93 0.78 0.87 0.86 0.93 
883 IGRFSEPHA 0.34 0.51 0.59 0.62 0.83 0.81 0.94 0.97 0.62 0.98 0.86 0.70 
884 MQLKSEIKQ 0.45 0.61 0.48 0.70 0.98 0.87 0.61 0.73 0.60 0.89 1.01 0.90 
885 EEQEYIKTV 0.83 0.96 1.01 1.35 1.34 1.37 0.66 1.35 0.85 1.38 1.57 1.30 
886 ERRPSNVSQ 0.47 0.69 0.49 0.61 0.55 0.70 0.92 0.89 0.57 0.64 0.81 0.93 
887 IPPHTPVRT 0.86 1.54 0.78 0.80 1.25 1.65 1.23 1.02 0.90 1.34 1.58 1.70 
888 NDSTSVSAV 0.37 0.32 0.43 0.46 0.61 0.79 0.59 0.52 0.70 0.52 0.69 0.86 
889 PYKFPSSPLRIPGZ 0.37 0.31 0.38 0.71 0.50 0.62 0.61 0.43 0.58 0.87 0.64 0.53 
890 GRPITPPRN 1.12 1.83 1.07 1.03 2.07 2.16 1.17 1.30 0.99 1.24 2.20 2.38 
891 ARTKRSGSV 1.72 2.36 1.44 1.95 2.75 2.45 1.66 1.96 1.22 1.66 3.02 3.15 
892 DLPGTEDFV 0.96 1.21 1.19 1.51 1.22 1.27 0.94 0.98 1.00 1.59 1.35 1.31 
893 GALYSGSEG 0.71 0.77 0.72 0.70 0.85 1.05 0.72 0.91 0.98 1.14 1.01 1.10 
894 GRVLTLPRS 1.49 2.31 1.56 1.29 2.43 4.03 1.61 1.77 0.99 1.52 3.16 3.85 
895 EEKESSNDS 0.44 0.43 0.58 1.67 0.50 0.73 0.74 0.61 0.83 0.80 0.65 0.73 
896 ERNLSFEIK 0.39 0.34 0.41 0.65 0.67 0.63 0.67 0.80 0.59 0.65 0.84 0.70 
897 RRRRSRRAS 0.96 1.34 0.90 1.03 4.29 4.32 1.04 1.41 1.13 1.39 4.82 4.29 
898 SIYSSDDDE 1.43 1.64 1.41 2.05 1.85 1.84 1.15 1.34 1.15 1.52 1.73 1.88 
899 HGYSLG 0.61 0.65 0.44 0.57 0.92 0.88 0.57 0.97 0.70 0.91 1.05 0.88 
900 AAASFKAKR 1.26 1.58 1.06 1.64 1.69 1.68 1.35 1.65 1.27 1.54 1.78 2.00 
901 ARKFSSARP 3.91 2.21 1.31 1.33 1.65 2.30 1.61 1.63 1.49 1.69 2.40 2.74 
902 DKEYYSVHN 1.42 0.49 0.63 0.79 0.62 0.80 0.66 1.00 0.87 0.94 0.92 0.80 
903 FRKLSFTES 0.54 0.67 0.79 0.79 0.80 0.69 1.09 1.03 0.96 1.26 0.99 0.75 
904 RFHKSSKDS 0.69 0.89 0.44 0.55 1.22 1.07 0.84 0.89 0.53 0.65 0.93 1.00 
905 RAKRSGSV 2.21 2.70 1.64 2.14 1.28 1.95 1.90 1.89 1.43 1.85 2.03 2.05 
906 KSESSQK 0.61 0.66 0.49 0.61 0.92 0.90 0.84 1.03 0.64 0.77 0.92 1.11 
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907 RRRLSDSNF 0.71 1.00 0.65 0.69 0.83 0.82 0.79 1.05 0.71 1.02 0.85 0.84 
908 SGKTSPSSS 1.12 0.59 0.48 0.50 0.67 0.78 0.61 1.08 0.53 0.67 0.88 1.02 
909 KSRRTI 1.04 1.07 0.80 0.98 0.79 0.78 1.12 1.38 1.01 1.41 0.99 0.78 
910 TAILE 0.36 0.65 0.43 0.54 0.60 0.69 0.62 0.87 0.74 0.94 0.59 0.73 
911 SYPLSPLSD 0.91 1.10 1.26 1.58 1.01 1.50 0.92 1.15 1.16 1.41 1.14 1.20 
912 TRQASQAGP 0.71 0.73 0.38 0.53 0.96 0.89 0.96 1.07 0.59 0.72 0.83 0.99 
913 VRVYTHEVV 0.55 0.62 0.47 0.53 1.12 0.77 0.59 0.92 0.98 0.86 0.64 0.96 
914 RENEYMPMA 0.52 0.65 0.44 0.46 0.70 0.77 0.67 0.91 0.62 0.69 0.65 0.80 
915 GRGLSLSR 2.84 3.46 1.83 1.82 2.51 4.13 2.50 2.36 1.28 1.66 3.99 4.68 
916 YIYGSFK 0.75 0.91 0.72 0.87 0.61 0.80 1.12 1.20 0.79 1.00 0.75 1.00 
917 VTRSSAVRL 1.47 2.19 1.44 1.54 1.36 1.93 1.60 1.60 1.36 1.63 1.77 2.16 
918 SRRLSQETG 0.52 0.56 0.49 0.55 1.23 1.37 0.68 0.98 0.57 0.71 1.00 0.95 
919 PASPSPQRQ 0.46 0.49 0.45 0.54 1.59 1.41 0.62 0.88 0.74 0.89 1.17 1.14 
920 PWRITDNEL 0.49 0.65 0.76 0.97 1.20 1.04 0.75 0.98 0.96 1.40 0.75 1.11 
921 STSVSAVAS 0.39 0.57 0.42 0.67 1.24 0.74 0.65 0.85 0.70 0.77 0.72 1.09 
922 TRIPSAKKY 1.02 1.42 0.97 1.52 1.20 1.27 1.20 1.51 1.16 1.76 1.39 1.45 
923 PGGSTPVSS 0.37 0.51 0.40 0.43 0.49 0.49 0.70 0.86 0.50 1.10 0.57 0.82 
924 QGTLSKIFK 0.76 1.38 0.78 1.05 2.11 1.09 1.15 1.48 1.05 1.54 1.44 1.31 
925 KKRLSVERI 0.97 1.36 1.52 1.48 2.17 2.64 1.40 1.51 1.87 1.83 2.42 2.06 
926 KYRKSSLKS 1.13 1.54 1.44 1.72 1.53 1.98 1.30 1.52 1.58 1.72 1.56 1.37 
927 PLSRRLSVA 0.83 1.24 0.91 1.52 1.07 1.65 0.77 1.16 0.72 0.92 1.23 1.27 
928 SRLHSVRER 2.27 3.01 1.89 2.89 1.75 2.50 1.73 1.73 1.57 2.10 2.70 2.66 
929 KNDKSKTWQ 0.75 0.93 0.67 0.84 1.11 0.73 1.09 1.78 0.76 1.36 0.77 0.93 
930 LGGGTFDIS 0.49 0.63 0.65 0.88 0.80 1.11 0.63 0.78 0.88 1.28 1.15 1.20 
931 QHLKSVMLQ 0.52 0.79 0.79 0.92 0.51 0.83 0.65 1.02 1.00 1.34 0.94 0.99 
932 ISQESSEEE 0.69 0.60 0.92 0.78 0.55 0.79 0.69 0.51 1.54 1.49 0.85 0.54 
933 NGDASPAAA 0.36 0.40 0.28 0.34 0.55 0.76 0.63 0.48 0.62 0.76 0.43 0.56 
934 EHVSSSEES 0.28 0.38 0.43 0.38 0.54 0.59 0.66 0.51 0.70 0.95 0.52 0.54 
935 ESMESYEVS 1.01 1.11 1.12 1.03 1.36 1.33 1.04 1.03 1.13 1.39 1.49 1.21 
936 KQLASFEIY 0.31 0.44 0.46 0.46 0.76 0.69 0.56 0.56 0.65 0.80 0.45 0.45 
937 NMPSSDDGL 0.20 0.46 0.50 0.51 0.61 0.45 0.71 0.62 0.51 1.00 0.35 0.39 
938 PYKFPSSPLRIPGZ 0.26 0.39 0.32 0.39 0.56 0.38 0.69 0.54 0.49 0.66 0.36 0.43 
939 GSLKSRKRA 1.51 2.19 3.39 1.70 1.76 1.91 2.24 2.28 1.91 2.23 1.69 1.73 
940 AVRRSDRAY 0.89 1.26 1.31 0.76 1.58 1.47 1.35 1.19 1.10 1.39 1.31 1.84 
941 DPTMSKKKK 0.69 1.02 0.88 0.69 1.07 0.99 1.39 1.12 1.04 1.22 1.11 1.03 
942 GGGTSPVFP 0.27 0.48 0.31 0.41 0.55 0.49 0.69 0.62 0.49 0.89 0.49 0.44 
943 GSTSTPAPS 0.21 0.42 0.14 0.30 0.46 0.40 0.69 0.49 0.25 0.67 0.22 0.39 
944 EGGRTVGAG 0.22 0.36 0.27 0.24 0.41 0.37 0.66 0.39 0.25 0.68 0.30 0.40 
945 ESHESLESY 0.65 0.96 0.70 0.73 0.84 1.06 1.06 0.76 0.57 1.07 1.15 0.89 
946 RVLESFRAA 0.88 1.44 1.38 1.42 0.97 1.23 1.31 1.27 1.01 1.44 1.25 1.26 
947 SMANSFVGT 0.45 0.62 0.50 0.49 0.53 0.65 0.80 0.63 0.68 0.92 0.64 0.82 
948 RRPSPA 1.06 1.53 0.91 0.82 1.17 1.46 1.42 1.26 1.11 1.17 1.28 4.93 
949 ADSFSLNDA 0.68 1.05 0.66 0.76 0.66 0.92 0.78 0.91 0.82 1.11 0.78 0.88 
950 ATSASPPQK 0.63 0.71 0.37 0.56 0.75 0.85 1.19 0.90 0.51 0.77 0.71 0.78 
951 DNLYYWDQD 0.88 1.19 0.90 1.22 1.02 1.12 0.93 0.81 0.93 1.10 1.29 0.80 
952 GDSSYKNIH 0.43 0.80 0.41 0.59 0.44 0.59 1.17 1.00 0.46 1.02 0.40 0.51 
953 RKRLSQDAY 0.29 0.47 0.27 0.45 0.52 0.55 0.61 0.51 0.60 0.90 0.49 0.69 
954 ASGSFKL 0.48 0.55 0.45 0.44 0.61 0.70 0.89 0.54 0.63 0.91 0.75 0.78 
955 LRRGSLG 1.60 2.27 1.47 1.84 1.70 2.66 1.74 1.51 1.35 1.39 2.22 2.56 
956 RRSVSEAAL 0.28 0.62 0.34 0.48 0.37 0.57 1.03 0.54 0.51 0.82 0.47 0.63 
957 SLAMSPRQR 0.43 0.78 0.44 0.53 0.46 0.76 1.13 0.92 1.24 0.87 0.68 0.94 
958 RRASLG 1.50 2.70 1.27 1.39 1.71 2.52 1.93 1.68 1.27 1.21 1.38 1.79 
959 AAVDTSSEI 0.52 0.95 0.55 0.93 0.70 1.08 0.94 0.68 0.54 1.16 0.96 0.75 
960 TESQSLTLT 0.38 0.52 0.55 0.60 0.50 0.64 0.74 0.95 0.83 0.96 0.64 0.96 
961 TTRVTPLRT 1.39 1.75 1.51 1.24 1.46 3.00 1.47 1.24 1.62 1.38 2.30 2.80 
962 WTADSGEGD 0.89 1.06 0.99 1.06 0.69 1.19 1.05 0.81 1.29 1.68 1.57 1.35 
963 RHRDTGILD 0.42 0.57 0.37 0.51 0.37 0.69 0.79 0.53 0.77 1.04 0.55 0.85 
964 NRIYTHQVV 0.88 1.10 0.95 1.04 0.88 1.06 1.22 1.02 1.00 1.15 1.24 5.31 
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965 LRKASLG 0.83 0.81 0.57 0.51 0.69 1.05 1.25 0.91 0.43 0.71 1.16 1.59 
966 YHGHSMSDP 0.41 0.51 0.30 0.49 0.47 0.72 0.91 0.74 0.28 0.86 0.61 0.73 
967 SSEESIISQ 0.64 0.69 0.70 0.74 0.63 1.05 0.68 0.96 0.94 1.17 1.04 1.00 
968 PKRGSGKDG 0.56 0.58 0.68 0.61 0.61 0.89 0.92 0.95 0.78 1.11 1.14 0.88 
969 LGSALRRR 3.64 3.89 4.25 4.05 4.15 5.35 3.46 3.42 4.08 3.81 5.61 5.62 
970 TDEDSDNEI 1.20 1.60 1.37 1.61 0.86 1.39 1.20 1.16 1.07 1.45 1.25 1.60 
971 TRSVSSSSY 1.21 1.31 0.84 0.80 1.11 1.45 1.52 1.09 0.77 1.09 1.62 1.71 
972 PPRRSSIRN 3.88 3.66 4.07 3.59 5.02 6.11 3.32 2.54 2.05 2.33 6.70 6.27 
973 RTKGSGSV 1.29 1.78 1.14 1.00 2.14 2.16 1.84 1.46 0.93 1.42 2.49 2.21 
974 KRAASPRKS 1.03 1.65 1.51 1.53 2.83 3.34 1.52 1.78 2.33 2.05 3.76 3.24 
975 LMAPSEEDH 0.36 0.53 0.51 0.68 0.68 0.56 0.67 0.92 0.89 1.12 0.78 0.83 
976 QNPVYHNQP 0.61 0.81 0.73 0.67 0.71 1.23 1.01 1.07 0.89 1.10 1.06 1.13 
977 SRSRSRSPG 3.17 3.59 3.23 3.85 4.59 5.92 3.26 3.52 3.44 3.81 5.51 5.64 
978 KRKVSSAEG 0.89 1.24 0.89 0.80 1.54 1.88 1.33 1.26 1.23 1.39 2.19 2.08 
979 LQDDYEDMM 1.14 1.40 0.87 1.31 1.28 2.21 1.16 1.12 0.88 1.24 2.07 1.75 
980 QRRSSEGST 0.40 0.65 0.57 0.47 0.59 0.94 0.95 0.57 0.43 1.01 0.64 0.79 
981 GVLRRASVA 1.90 2.96 0.87 2.18 0.94 1.74 1.28 1.68 0.95 1.03 1.23 1.85 
982 KRPSLRAKA 2.60 3.39 1.14 2.94 1.08 2.10 1.75 2.27 1.58 1.59 1.50 2.10 
983 EASTTVSKT 0.66 1.12 0.31 0.53 0.45 1.05 0.60 0.93 0.46 0.56 0.93 1.23 
984 ELSNYIAMG 0.55 0.74 0.34 0.52 0.32 0.83 0.55 0.86 0.66 0.50 0.71 0.92 
985 HHHATPSPP 0.83 0.99 0.39 0.53 0.38 0.81 0.74 1.02 0.59 0.46 0.52 1.13 
986 KTETSQVAP 0.50 0.61 0.37 0.47 0.45 0.87 0.64 0.95 0.45 0.45 0.56 0.85 
987 PYKFPSSPLRIPGZ 0.54 0.85 0.40 0.48 0.56 0.80 0.59 0.79 0.57 0.51 0.68 0.65 
988 GGSVTKKRK 2.16 2.37 1.41 1.97 0.83 1.15 1.90 2.26 1.75 1.58 0.98 0.67 
989 AKRISGKMA 2.05 2.42 0.78 1.21 0.76 1.44 1.27 1.40 1.02 0.97 1.05 0.98 
990 DDPSYVNVQ 0.96 1.12 0.41 0.69 0.44 1.22 0.67 0.72 0.65 0.59 0.95 0.70 
991 EVEKSPVKS 0.61 0.69 0.34 0.49 0.20 0.88 0.53 0.82 0.65 0.33 0.85 0.75 
992 GKSSSYSKQ 1.24 1.68 0.61 0.81 0.37 1.17 1.16 1.28 0.90 0.89 0.90 1.01 
993 DSRSSLIRK 1.58 2.23 0.89 1.60 0.47 1.49 1.24 1.49 0.92 0.92 0.85 1.11 
994 EKAKSPVPK 0.84 1.40 0.54 0.73 0.56 1.31 0.91 1.32 0.87 0.74 0.90 0.83 
995 RQRKSRRTI 2.29 2.86 1.29 1.66 0.96 1.80 1.70 2.11 1.39 1.30 1.50 1.50 
996 SAYATVKAY 0.97 0.92 0.27 0.60 0.38 1.02 0.33 0.80 0.48 0.41 0.67 0.90 
997 NTDGSTDYG 2.17 2.86 0.67 1.80 0.38 2.06 0.83 1.17 0.96 0.91 0.74 0.84 
998 KRTLR 2.33 2.77 1.42 2.28 0.66 2.30 1.53 2.27 1.43 1.74 1.42 1.78 
999 AGPTSARDG 0.70 0.76 0.30 0.42 0.16 0.88 0.56 0.99 0.44 0.38 0.58 0.83 

1000 DAPDTPELL 0.79 1.09 0.71 0.86 0.46 1.22 0.73 0.91 0.62 0.57 0.61 1.20 
1001 ESSYSYEEI 1.71 2.00 0.86 1.55 0.52 1.85 0.85 1.07 0.91 0.77 0.89 1.01 
1002 YSLGSALRP 1.26 1.87 0.29 0.72 0.61 1.02 0.75 1.14 0.40 0.50 0.67 0.82 
1003 SPHQSEDEE 0.78 0.83 0.31 0.45 0.35 1.09 0.27 0.78 0.48 0.43 0.67 0.77 
1004 RKRSRAE 1.47 1.70 0.84 0.88 0.50 1.42 0.83 1.24 0.96 0.87 1.39 1.12 
1005 RNASTNDSP 0.66 0.87 0.45 0.54 0.25 0.90 0.43 0.88 0.55 0.44 0.62 0.77 
1006 SAELYSNAL 1.01 1.22 0.48 0.90 0.36 1.01 0.44 1.03 0.70 0.68 0.50 0.81 
1007 NRQLSSGVS 0.82 1.06 0.33 0.69 0.39 1.19 0.54 1.17 0.61 0.38 0.67 0.93 
1008 VGPDSD 0.57 0.86 0.36 0.71 0.18 0.88 0.34 0.92 0.65 0.55 0.73 0.62 
1009 SSSESGAPE 0.63 1.01 0.21 0.71 0.29 0.73 0.25 0.72 0.30 0.39 0.43 0.51 
1010 TKHIYSNLA 0.75 0.93 0.26 0.65 0.49 0.91 0.22 0.91 0.27 0.48 0.57 0.82 
1011 VDEMYREAP 0.70 0.86 0.29 0.46 0.24 1.07 0.36 0.82 0.51 0.45 0.66 0.73 
1012 YRKGSLKSR 1.28 1.45 0.56 1.21 0.58 1.31 0.90 1.34 0.79 0.77 0.57 0.92 
1013 SNQEYLDLS 1.43 1.70 0.52 1.05 0.43 1.48 0.44 1.00 0.74 0.63 0.54 0.99 
1014 RKISASE 0.72 1.08 0.41 0.68 0.47 1.28 0.32 1.08 0.69 0.47 0.61 0.93 
1015 VGFMTEYVA 0.77 1.00 0.50 0.81 0.26 1.35 0.24 1.04 0.63 0.54 0.85 0.97 
1016 QTASSPLSP 0.55 0.73 0.14 0.45 0.46 0.91 0.34 0.78 0.30 0.28 0.45 0.57 
1017 LRKVSKQEE 0.61 1.13 0.32 0.58 0.56 1.32 0.37 1.01 0.41 0.50 0.65 1.09 
1018 PQRATSNVF 0.66 1.05 0.15 0.58 0.64 1.34 0.48 0.76 0.45 0.49 0.52 1.05 
1019 SSNDSTSVS 0.94 1.20 0.28 1.10 0.45 1.20 0.67 1.03 0.64 0.55 0.44 0.90 
1020 THVASVSDV 0.68 0.81 0.32 0.65 0.54 1.33 0.53 0.97 0.58 0.46 0.50 0.89 
1021 LRRLSTKYR 2.73 3.39 1.66 3.17 0.95 2.05 1.45 2.09 1.53 1.93 1.04 1.33 
1022 PRRDSTEGF 0.89 1.16 0.62 0.97 0.52 1.70 0.33 1.06 0.98 0.82 0.69 0.76 
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1023 KAEEYILKK 0.56 0.69 0.36 0.58 0.71 1.83 0.53 0.89 0.77 0.47 0.51 0.79 
1024 KRPSFRAKA 2.61 3.02 2.15 3.06 1.81 3.80 1.33 1.87 1.53 1.73 1.77 2.80 
1025 PTPSAPSPQPKG 0.71 0.78 0.34 0.59 0.57 1.56 0.65 0.72 0.44 0.50 0.70 1.46 
1026 QRYSSDPTG 0.48 0.77 0.26 0.49 0.54 1.08 0.44 0.97 0.47 0.44 0.48 0.93 
1027 KEDTYTAHA 0.49 0.63 0.30 0.47 0.49 1.46 0.56 1.04 0.60 0.42 0.61 0.68 
1028 KRRLSFSET 1.29 1.64 0.73 1.20 0.94 2.20 0.99 1.48 1.50 1.11 0.98 1.23 
1029 KRAKAKTTKKR 2.93 3.46 3.07 4.17 1.95 3.67 2.67 4.04 3.79 4.15 2.30 2.37 
1030 HRQETVDAL 0.36 0.68 0.63 0.48 0.47 0.81 0.65 0.65 0.42 0.70 0.68 0.69 
1031 LNRMSFASN 0.46 0.93 0.44 0.82 0.53 0.96 0.67 0.81 0.72 0.54 0.72 1.06 
1032 EEDTYTMPS 1.03 1.41 0.82 1.10 0.65 1.15 0.58 0.98 1.21 0.91 0.62 1.16 
1033 EQEEYEDPD 1.19 1.17 0.80 0.97 0.57 1.76 0.62 1.10 1.00 0.98 1.05 1.29 
1034 HVSSSEESI 0.45 0.75 0.45 0.65 0.41 0.97 0.49 0.71 0.70 0.74 0.68 0.87 
1035 METPSQRRA 0.69 1.21 0.52 0.70 0.68 1.55 1.04 1.07 0.74 0.90 1.07 1.34 
1036 PYKFPSSPLRIPGZ 0.34 0.54 0.35 0.41 1.20 0.86 0.65 0.82 0.58 0.64 0.66 0.82 
1037 GNFNYVEFT 0.91 1.37 0.82 1.44 0.56 1.76 0.77 0.86 0.95 0.85 1.38 1.15 
1038 APRTPGGRR 2.14 2.72 1.64 1.65 0.96 3.72 1.73 2.34 2.57 1.81 2.71 2.44 
1039 DGNGYISAA 0.63 1.10 0.76 0.74 0.48 1.34 0.71 1.61 0.81 0.90 0.65 1.12 
1040 FLTEYVATR 0.57 1.04 0.67 0.52 0.53 1.18 0.68 1.21 0.80 0.77 0.62 0.79 
1041 GRALSTRAQ 1.43 2.21 0.84 1.19 1.15 3.14 1.37 1.59 0.97 1.01 2.08 3.55 
1042 EDRMSLVNS 0.49 0.65 0.40 0.45 0.67 1.10 0.59 0.73 0.43 0.38 0.73 1.12 
1043 ENPEYLGLD 0.82 1.65 0.65 1.30 0.81 1.57 0.76 0.95 0.85 1.04 1.15 1.25 
1044 RRLSSLRAS 2.70 3.18 1.56 2.50 0.86 4.78 1.64 2.42 1.37 1.30 2.18 3.69 
1045 SFKKSFKLS 1.60 1.86 1.28 1.87 0.76 1.85 1.21 1.95 1.42 1.56 1.11 1.43 
1046 PSKKYAIKG 0.44 0.80 0.40 0.63 0.79 1.34 0.55 0.85 0.51 0.74 0.54 0.69 
1047 RRPSV 1.29 2.00 0.94 1.37 0.76 2.00 1.10 1.45 0.90 0.91 1.11 1.42 
1048 APETPGGRR 0.86 1.56 0.90 1.45 1.00 1.77 1.06 1.26 1.18 1.13 1.12 1.44 
1049 DEEMSETAD 0.57 0.84 0.46 1.04 0.45 1.19 0.70 0.83 0.86 0.74 0.75 1.16 
1050 FFSSSESGA 0.47 0.77 0.48 0.63 0.45 1.33 0.68 1.04 0.84 0.68 0.75 1.05 
1051 RDDTYTAHA 0.65 0.89 0.41 0.59 0.24 1.10 0.38 1.13 0.75 0.60 0.72 0.86 
1052 APTPGGRR 1.44 2.32 1.33 1.24 0.24 1.03 1.19 2.19 1.77 1.43 0.53 0.79 
1053 STNDSPL 0.46 0.83 0.41 0.44 0.28 1.43 0.60 0.85 1.11 0.66 0.50 1.02 
1054 RRKASGPPV 0.77 1.48 0.64 0.62 0.59 1.36 0.82 1.14 0.82 0.95 1.06 1.10 
1055 SEENSKKTV 0.38 0.68 0.37 0.56 0.42 1.23 0.48 0.76 0.48 0.54 0.69 0.79 
1056 PASPSPQRQ 0.67 1.08 0.49 3.03 0.48 1.22 0.78 0.85 0.65 0.71 0.82 1.16 
1057 RRASR 1.89 2.51 1.64 1.87 1.05 2.35 1.69 1.83 1.83 1.84 1.63 2.28 
1058 STNEYMDMK 0.50 0.62 0.32 0.56 0.27 1.25 0.13 0.92 0.68 0.45 0.69 0.84 
1059 TPPLSPIDM 0.45 0.70 0.42 0.60 0.16 1.10 0.30 0.98 0.64 0.54 0.58 0.80 
1060 VKGATSDEE 0.46 0.76 0.41 0.49 0.28 1.27 0.42 0.78 0.69 0.88 0.52 0.87 
1061 QRATSNVFA 0.39 0.79 0.44 0.61 0.50 1.39 0.43 0.91 0.60 0.79 0.81 0.89 
1062 SPRKSPRKS 1.32 2.39 1.44 1.61 0.98 2.30 1.27 2.05 1.38 1.80 1.56 1.66 
1063 RRRASVA 1.44 2.50 1.25 1.81 1.04 3.40 1.11 1.70 1.28 1.39 1.71 3.22 
1064 VPTPSPLGP 0.48 0.86 0.43 0.70 0.43 1.24 0.71 0.92 0.72 0.65 0.64 1.49 
1065 SRKDSLDDS 0.69 0.95 0.47 0.85 0.45 1.56 0.27 0.96 0.97 0.85 0.88 1.02 
1066 LSEHSSPEE 0.38 0.70 0.32 0.60 0.26 1.19 0.18 0.95 0.61 0.49 0.73 1.01 
1067 PSPKYPGPQ 0.34 0.59 0.31 0.38 0.32 1.28 0.17 0.91 0.44 0.71 0.53 0.72 
1068 SSVLYTAVQ 0.47 0.75 0.41 0.58 0.22 1.27 0.21 0.94 0.66 0.71 0.50 0.87 
1069 TLSDSDDED 0.73 1.59 0.67 1.58 0.49 1.62 0.43 1.14 1.00 1.60 0.64 1.09 
1070 LSLDSQGRN 0.38 0.74 0.42 0.77 0.74 1.58 0.43 0.97 0.42 0.61 0.64 1.16 
1071 PTKRSPQKG 0.32 0.72 0.37 0.60 0.52 1.52 0.63 1.00 0.66 0.61 0.69 1.30 
1072 KIQASFRGH 1.57 2.48 1.50 2.54 1.51 3.47 0.91 2.04 3.82 1.76 2.24 2.46 
1073 KRSNSVDTS 0.66 1.38 0.42 0.76 0.56 1.81 0.39 1.08 0.64 0.81 1.28 1.42 
1074 KRKQISGRGL 0.63 1.23 0.48 0.87 0.48 1.52 0.54 1.19 0.81 1.05 1.23 0.98 
1075 SQESSEEEQ 0.48 0.88 0.45 0.76 0.39 1.16 0.37 0.86 0.73 0.94 0.57 0.60 
1076 KKDVTPVKA 0.66 1.36 0.72 0.99 0.93 1.86 0.90 1.33 0.91 1.22 1.35 1.44 
1077 KSRWSGSQQ 0.90 1.50 0.70 1.57 0.76 2.02 1.15 1.46 1.08 1.24 1.52 2.01 
1078 LYSGSEGDS 0.63 1.44 0.56 1.73 0.58 1.99 0.64 1.23 1.02 1.23 0.78 1.63 
1079 IGHHSTSDD 0.36 0.54 0.46 0.70 1.26 1.17 0.54 0.81 0.62 0.48 0.73 0.79 
1080 MPGETPPLS 0.44 0.72 0.36 0.56 1.17 1.32 0.65 0.91 0.49 0.69 0.78 1.11 
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1081 EEPVYEAEP 1.78 1.80 1.21 2.13 0.80 2.08 0.99 1.29 1.40 1.97 1.21 1.53 
1082 ERRNSILTE 0.58 1.01 0.51 1.05 0.59 0.98 0.76 1.06 0.64 1.05 0.72 0.84 
1083 INETSQHHD 0.24 0.36 0.31 0.44 0.72 0.72 0.60 0.82 0.43 0.73 0.47 0.83 
1084 NDSNYVVKG 0.30 0.37 0.33 0.48 0.54 0.61 0.61 0.87 0.55 0.87 0.50 0.81 
1085 PYKFPSSPLRIPGZ 0.31 0.44 0.33 0.52 0.54 0.70 0.64 0.86 0.62 0.70 0.62 0.67 
1086 GRNASTNDS 0.53 0.59 0.48 0.55 0.65 1.03 0.78 0.92 0.63 0.55 0.71 0.89 
1087 ARSGSSTYS 1.16 2.06 0.69 1.01 0.73 2.45 1.40 1.57 0.72 1.12 1.70 2.67 
1088 DLLTSPDVG 0.48 0.73 0.98 0.79 0.70 1.16 0.67 0.93 0.79 1.09 0.66 1.19 
1089 GAGNSLRTA 0.70 1.18 0.44 0.71 0.72 1.23 1.28 1.19 0.73 1.01 0.97 1.19 
1090 GRTWTLAGT 0.53 1.02 0.29 0.53 0.56 1.06 1.16 1.29 0.64 0.91 0.74 0.79 
1091 EEHVYSFPN 0.52 0.77 0.47 0.72 0.64 1.18 0.77 1.02 0.75 0.97 0.73 0.74 
1092 ERHHSIDAQ 0.50 0.55 0.52 0.49 0.71 1.15 0.75 0.97 0.53 0.71 0.72 0.71 
1093 RRRRAASVA 2.60 3.45 2.36 2.25 0.98 3.32 2.12 2.45 2.47 2.02 2.25 2.67 
1094 SIRDTPAKN 0.46 0.75 0.49 0.62 0.41 1.22 0.79 0.87 0.70 0.62 0.64 1.32 
1095 GGYSLG 0.46 0.77 0.59 0.65 0.50 1.13 0.86 1.04 0.70 0.94 0.63 1.12 
1096 AAASFKAKK 0.83 1.36 0.76 1.19 0.78 1.39 1.24 1.46 1.09 1.29 1.11 1.36 
1097 ARDIYKNDY 0.61 0.79 0.51 0.90 0.49 1.22 0.69 1.03 0.99 1.19 0.87 1.11 
1098 DKEVSDDEA 0.51 0.71 0.72 0.94 0.75 1.54 0.61 0.97 0.87 1.30 0.84 0.89 
1099 FRKFTKSER 1.49 2.36 1.58 1.97 1.27 2.59 1.56 1.96 2.19 1.92 1.69 1.54 
1100 RFFGSDRGA 1.05 2.18 1.05 1.52 0.61 1.88 1.32 1.55 0.94 1.22 1.23 2.01 
1101 PRTPGGRR 0.67 1.36 0.83 0.87 0.39 1.06 1.02 1.27 0.95 1.23 0.57 1.27 
1102 KRRVSEV 0.46 0.98 0.38 0.70 1.35 2.00 0.98 1.16 0.74 1.03 1.67 1.99 
1103 RRRGSSIPQ 1.20 1.95 0.79 1.32 0.85 1.50 1.32 1.67 1.12 1.25 1.33 1.92 
1104 SGDTSPRHL 0.40 0.52 0.41 0.63 0.51 0.99 0.74 0.90 0.58 0.80 0.60 1.05 
1105 KQITVR 0.90 1.37 0.83 0.97 2.64 1.79 1.23 1.53 1.14 1.40 1.23 1.23 
1106 SSKRA 1.06 1.90 1.37 1.05 1.34 2.06 1.32 1.64 3.74 1.47 1.57 1.37 
1107 SVSSSSYRR 3.06 4.12 2.34 3.80 1.00 4.34 2.29 3.18 2.10 2.81 2.79 4.77 
1108 TRQASISGP 0.68 1.48 0.55 1.06 0.49 1.56 1.10 1.24 0.77 1.00 0.81 2.33 
1109 VRTYTHEVV 0.52 0.90 0.49 0.78 0.79 1.43 0.80 1.14 0.90 2.05 0.73 1.49 
1110 REILSRRPS 2.59 3.45 1.33 2.96 1.37 3.79 1.83 2.65 1.37 1.49 2.41 4.11 
1111 GASGSFKL 0.45 0.97 0.50 1.10 0.79 1.00 1.01 1.12 0.81 1.02 0.66 1.60 
1112 VRRSDRA 0.90 1.83 0.81 1.10 0.74 1.47 1.13 1.53 1.18 2.00 1.27 1.58 
1113 VTRRTLSMD 1.06 1.76 1.02 1.72 0.69 1.55 1.15 1.66 1.63 1.34 1.29 1.48 
1114 SRRGSESSE 0.79 1.29 0.67 1.13 0.69 2.43 0.80 1.24 0.89 0.84 0.93 1.96 
1115 PASAYGSVK 0.44 0.84 0.43 0.75 0.37 1.63 0.68 1.28 0.53 0.63 0.66 1.53 
1116 PWQVSLRTR 0.44 0.79 0.42 0.85 0.34 1.53 0.64 1.10 0.79 0.94 0.75 1.32 
1117 STSRSLYSS 1.54 3.98 1.26 3.09 1.38 4.00 1.81 2.42 1.86 1.78 3.07 4.42 
1118 TRGGSLERS 0.48 1.34 0.53 1.28 0.64 1.34 1.05 1.21 0.77 1.23 1.12 2.49 
1119 PFKLSGLSF 0.23 0.63 0.29 0.85 0.54 1.14 0.63 0.82 0.69 0.92 0.62 0.86 
1120 QEQEYVQAV 0.37 0.38 0.29 0.62 0.44 1.30 0.55 0.89 0.76 1.05 0.97 1.06 
1121 KKRFSFKKS 1.70 2.46 2.54 3.23 1.37 3.37 1.92 3.00 4.33 3.76 3.32 3.08 
1122 KYLASASTM 0.60 1.22 0.65 1.04 0.52 2.00 0.84 1.19 1.04 0.99 1.00 1.82 
1123 PRRVSRRRR 0.37 0.87 0.76 0.86 0.27 1.55 0.80 1.09 1.04 0.96 0.62 1.34 
1124 SRKRSGEAT 0.41 1.06 0.33 0.77 0.54 2.14 0.73 1.03 0.66 0.91 1.02 1.51 
1125 KMKDTDSEE 0.20 0.65 0.29 1.06 0.57 1.06 0.72 0.98 0.64 1.03 0.50 1.18 
1126 LFRLSEHSS 0.18 0.48 0.22 0.77 0.32 1.04 0.56 0.90 0.44 0.75 0.51 0.64 
1127 QDENTVSTS 0.31 0.66 0.22 1.09 0.26 1.00 0.58 0.99 0.60 0.99 0.41 0.66 
1128 ISITSRKAQ 0.48 0.96 0.48 0.56 0.84 1.01 0.94 1.30 0.75 1.21 1.09 1.10 
1129 NFLKTSAGS 0.41 0.59 0.42 0.52 0.57 0.79 0.99 1.07 0.55 0.87 0.83 0.87 
1130 EHIPYTHMN 0.50 0.91 0.50 0.54 0.51 1.19 0.87 1.14 0.90 1.12 0.74 0.87 
1131 ESMESYELN 1.38 1.48 1.27 1.15 0.66 2.09 1.13 1.22 0.98 1.25 1.65 1.25 
1132 KKRFSFKKS 2.57 2.39 1.84 2.29 1.36 2.68 2.88 2.52 3.03 2.74 2.00 1.88 
1133 NKQGYKARQ 0.84 1.58 1.32 0.57 1.31 1.93 1.26 1.47 0.64 1.18 1.77 1.50 
1134 PYKFPSSPLRIPGZ 0.49 0.63 0.70 0.44 0.50 0.87 0.76 0.97 0.42 0.81 0.62 0.76 
1135 GSGTSSRPS 0.67 1.18 0.67 0.50 0.53 1.08 1.06 1.26 0.62 0.94 0.63 0.70 
1136 AVMVSHYIH 0.97 1.28 1.04 1.07 0.64 1.55 1.13 1.39 1.24 1.34 1.60 1.17 
1137 DPPGTESFV 0.90 1.39 1.25 1.24 0.60 1.73 1.00 1.45 1.14 1.47 1.23 1.06 
1138 GFKRSYEEH 0.71 1.01 1.87 0.63 0.60 1.41 1.06 1.21 0.77 1.14 0.77 0.75 
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1139 GSRRRRRRY 1.67 1.88 1.85 1.00 2.26 3.86 2.25 2.12 1.56 1.71 3.60 2.70 
1140 EFPLSPPKK 0.75 1.01 0.83 0.49 0.81 1.47 1.00 1.22 1.23 1.10 1.25 1.38 
1141 ESEKTKTKE 0.48 0.60 0.86 0.49 0.61 1.01 0.72 0.98 0.57 0.80 0.62 0.71 
1142 RSSMSGLHL 0.83 1.33 2.13 0.90 0.57 1.43 0.90 1.38 0.92 1.12 1.02 1.05 
1143 SLVNSRAQE 0.45 0.57 1.73 0.50 0.56 1.25 0.68 1.03 0.58 0.92 0.78 0.56 
1144 RRATVA 1.39 2.39 1.35 0.93 1.02 2.58 1.49 1.76 1.11 1.29 1.54 1.35 
1145 ADSFSLHDA 0.78 1.08 0.95 0.70 0.72 1.91 0.92 1.39 0.86 0.96 1.25 0.96 
1146 ATRRSYVSS 1.62 2.12 1.55 1.27 1.52 3.42 1.78 1.77 1.00 1.27 2.61 1.95 
1147 DNIDSQGRN 0.57 0.68 0.95 0.47 0.73 1.24 0.89 1.01 2.20 0.85 0.76 0.91 
1148 GDSESGEEE 0.86 1.31 1.01 1.40 0.56 1.02 1.00 1.39 1.23 1.24 0.62 0.48 
1149 RKRKSSQAL 1.01 1.60 1.79 0.92 0.81 1.73 1.32 1.73 2.12 1.46 1.07 1.16 
1150 AKRSRKE 0.85 1.11 1.20 0.87 0.55 1.27 1.15 1.49 1.09 1.24 0.65 0.80 
1151 LRRATLG 1.15 1.70 1.35 1.20 1.47 2.42 1.43 1.56 0.91 1.24 1.45 1.90 
1152 RRSSSVGYI 1.12 2.00 1.51 1.36 1.65 2.19 1.57 1.86 1.15 1.21 1.87 1.82 
1153 SKVTSKAGS 0.81 1.23 0.83 0.60 0.74 1.93 1.19 1.45 0.85 0.88 1.30 1.21 
1154 RGYSLG 1.12 1.76 0.92 0.78 0.65 1.43 1.43 1.59 0.78 0.89 1.21 1.07 
1155 AARTPGGRR 1.12 2.19 1.61 1.18 1.00 1.77 2.00 2.00 1.67 1.45 1.84 1.24 
1156 TEPQYQPGE 0.50 0.76 0.95 0.72 0.64 1.00 0.70 0.95 1.26 1.26 0.66 0.69 
1157 TTRRSASKT 1.72 2.68 1.27 1.29 1.10 2.14 1.40 1.75 1.27 1.28 1.73 2.17 
1158 WLTKTPEGN 0.39 0.63 0.69 0.55 0.70 1.37 0.71 1.15 1.06 0.65 0.70 1.01 
1159 RGRSSVYSA 0.51 0.88 1.19 0.62 1.86 4.27 0.82 1.25 1.86 0.61 3.84 5.28 
1160 RKRTLRRL 1.66 2.68 2.25 1.55 1.24 2.54 1.80 2.45 1.94 1.24 2.84 3.36 
1161 LRHASLG 0.81 1.16 1.07 0.66 0.83 1.44 1.05 1.57 0.70 0.86 0.86 1.15 
1162 YGNGYSSNS 0.56 0.99 0.57 0.60 0.82 1.55 1.01 1.24 1.25 0.92 0.80 0.75 
1163 SRTPSLPTP 0.46 0.65 0.36 0.78 0.55 0.91 0.82 1.20 0.84 0.74 0.79 0.71 
1164 PKKGSKKAV 0.42 0.83 0.65 0.85 0.64 1.27 0.73 1.00 0.84 1.24 1.03 1.01 
1165 LELSDDDD 0.60 1.18 0.97 1.26 0.72 1.45 0.79 1.32 1.18 1.30 1.18 1.06 
1166 TDDGYMPMS 0.56 0.73 0.70 0.65 1.26 2.56 0.77 1.24 1.36 0.89 0.87 1.33 
1167 TRRLTGFLP 1.03 1.39 0.56 0.75 1.13 2.07 1.25 1.70 1.34 1.12 1.43 1.43 
1168 PPEKTEEEE 0.71 0.84 0.45 0.59 0.64 1.28 0.93 1.21 0.68 0.99 0.72 0.89 
1169 RTGRSGSV 1.72 3.91 1.52 1.90 1.42 3.47 2.88 3.29 1.32 1.46 3.40 2.60 
1170 KQSPSSSPT 0.41 0.55 0.32 0.58 0.71 1.09 0.78 1.14 0.61 0.92 1.44 1.09 
1171 LLRPSRRVR 1.24 1.85 0.85 2.22 2.25 3.84 1.56 2.55 1.65 1.75 5.44 5.34 
1172 QMALTPVVV 0.43 0.68 0.33 0.63 0.58 1.27 0.86 1.18 0.60 0.87 1.05 1.72 
1173 SRSRSPGRP 1.49 2.92 1.83 2.59 1.04 2.70 1.91 2.62 1.04 1.59 2.71 3.01 
1174 KRKRSRKES 1.36 1.79 2.12 1.90 1.15 2.03 1.93 2.37 2.14 1.96 2.05 2.00 
1175 LQAISPKQS 0.50 0.74 0.44 0.48 0.73 1.15 1.03 1.27 1.04 0.67 0.93 0.93 
1176 QRRRSLEPP 0.58 1.16 0.42 0.55 1.49 3.06 1.04 1.22 0.58 0.74 1.08 0.95 

 
 

 

 

 

 



 

 

 

 

 

 

 

 

About the Author 

Joseph Wahle graduated from Eckerd College in St. Petersburg, FL in 2002 with a BS in 

Marine Biology.  During this time he began working in the laboratory of Gary Litman, 

Ph.D. where he participated in research involving the identification of immune type 

receptors in lower vertebrates.  From there Joseph joined the Cancer Biology Ph.D. 

program at H. Lee Moffitt Cancer Center at the University of South Florida where he 

joined the laboratory of William G. Kerr Ph.D.   In his tenure in the Kerr Lab Joseph 

worked on a variety of projects focusing primarily on the NK cell.  During this time he 

has presented his work at three international meetings, obtained a predoctoral grant from 

the American Heart Association, as well as publishing 2 papers in the Journal of 

Immunology, one of which was a Cutting Edge paper.   

 

 


	University of South Florida
	Scholar Commons
	2007

	Signaling in natural killer cells: SHIP, 2B4 and the Kinome
	Joseph A. Wahle
	Scholar Commons Citation


	Microsoft Word - Full Diss 20071022.doc

