17 research outputs found

    Electrospun Silk Fibroin/Polylactic-co-glycolic Acid/Black Phosphorus Nanosheets Nanofibrous Membrane with Photothermal Therapy Potential for Cancer

    No full text
    Photothermal therapy is a promising treating method for cancers since it is safe and easily controllable. Black phosphorus (BP) nanosheets have drawn tremendous attention as a novel biodegradable thermotherapy material, owing to their excellent biocompatibility and photothermal properties. In this study, silk fibroin (SF) was used to exfoliate BP with long-term stability and good solution-processability. Then, the prepared BP@SF was introduced into fibrous membranes by electrospinning, together with SF and polylactic-co-glycolic acid (PLGA). The SF/PLGA/BP@SF membranes had relatively smooth and even fibers and the maximum stress was 2.92 MPa. Most importantly, the SF/PLGA/BP@SF membranes exhibited excellent photothermal properties, which could be controlled by the BP@SF content and near infrared (NIR) light power. The temperature of SF/PLGA/BP@SF composite membrane was increased by 15.26 °C under NIR (808 nm, 2.5 W/cm(2)) irradiation for 10 min. The photothermal property of SF/PLGA/BP@SF membranes significantly killed the HepG2 cancer cells in vitro, indicating its good potential for application in local treatment of cancer

    Electrospun SF/PLGA/ICG Composite Nanofibrous Membranes for Potential Wound Healing and Tumor Therapy

    No full text
    Indocyanine green (ICG) is a near-infrared (NIR) organic reagent for clinical bioimaging and phototherapy. It is a suitable photosensitizer for photodynamic antimicrobial chemotherapy (PACT). In this study, various ICG-loaded nanofibrous membranes were prepared. The water vapor transmission rate (WVTR) of SF/PLGA/20ICG was 3040.49 ± 157.11 g·m−2 day−1, which allowed the maintenance of a humid environment above the wound. The growth inhibition rates for S. aureus and E. coli were 91.53% and 87.95%, respectively. The nanofibrous membranes exhibited excellent antimicrobial performance. Cellular experiments showed that the nanofibrous membranes have good cytocompatibility and antitumor efficacy. SF/PLGA/20ICG showed good potential for application in wound healing and cancer therapy
    corecore