9 research outputs found

    Evaluating the Ecological Services of Roof Greening Plants in Beijing Based on Functional Traits

    No full text
    Selecting suitable species to enhance ecological functions is crucial for improvements in the planning and design of roof greening and in maintaining sustainable urban development, especially in rapidly urbanized areas. Assisted by field trips to enhance studies, the present project assessed the ecological functions of 207 plant species used for roof greening in Beijing based on their key functional traits. The results indicate that regulating, cultural, supplying, and supporting functions differed significantly among species and families in the study area. Rosaceae species have higher levels of overall ecological functions than other species, and a large number of Compositae species have lower-level functions. Compared to other families, Araliaceae and Nyctaginaceae have higher mean values of cultural and supporting functions and the highest mean overall function value of 37. Ulmaceae, Sapindaceae, Ginkgoaceae, Berberidaceae, and Aceraceae have higher mean regulating, cultural, supporting, and overall function values. Amaranthaceae, Umbelliferae, Lamiaceae, Saxifragaceae, Ericaceae, and Gramineae have lower values. The existing roof greening in Beijing includes some pitfalls with respect to plant composition as well as plant selection that does not consider ecological functions. The following measures could be proposed to increase ecological functions: (1) Increasing the number of plants with shallow roots and with strong adaptation traits to roof conditions; (2) Enriching ecological communities with diverse plants with high ecological functions; and (3) Carrying out rational ecological planning and management based on detailed and objective data on plant species. Future studies should focus on specifying plant functional traits to enhance ecological functions

    A novel Mcl-1 inhibitor synergizes with venetoclax to induce apoptosis in cancer cells

    No full text
    Abstract Background Evading apoptosis by overexpression of anti-apoptotic Bcl-2 family proteins is a hallmark of cancer cells and the Bcl-2 selective inhibitor venetoclax is widely used in the treatment of hematologic malignancies. Mcl-1, another anti-apoptotic Bcl-2 family member, is recognized as the primary cause of resistance to venetoclax treatment. However, there is currently no Mcl-1 inhibitor approved for clinical use. Methods Paired parental and Mcl-1 knockout H1299 cells were used to screen and identify a small molecule named MI-238. Immunoprecipitation (IP) and flow cytometry assay were performed to analyze the activation of pro-apoptotic protein Bak. Annexin V staining and western blot analysis of cleaved caspase 3 were employed to measure the cell apoptosis. Mouse xenograft AML model using luciferase-expressing Molm13 cells was employed to evaluate in vivo therapeutic efficacy. Bone marrow samples from newly diagnosed AML patients were collected to evaluate the therapeutic potency. Results Here, we show that MI-238, a novel and specific Mcl-1 inhibitor, can disrupt the association of Mcl-1 with BH3-only pro-apoptotic proteins, selectively leading to apoptosis in Mcl-1 proficient cells. Moreover, MI-238 treatment also potently induces apoptosis in acute myeloid leukemia (AML) cells. Notably, the combined treatment of MI-238 with venetoclax exhibited strong synergistic anti-cancer effects in AML cells in vitro, MOLM-13 xenografts mouse model and AML patient samples. Conclusions This study identified a novel and selective Mcl-1 inhibitor MI-238 and demonstrated that the development of MI-238 provides a novel strategy to improve the outcome of venetoclax therapy in AML

    Large-scale assembly of isotropic nanofiber aerogels based on columnar-equiaxed crystal transition

    No full text
    Abstract Ice-templating technology holds great potential to construct industrial porous materials from nanometers to the macroscopic scale for tailoring thermal, electronic, or acoustic transport. Herein, we describe a general ice-templating technology through freezing the material on a rotating cryogenic drum surface, crushing it, and then re-casting the nanofiber slurry. Through decoupling the ice nucleation and growth processes, we achieved the columnar-equiaxed crystal transition in the freezing procedure. The highly random stacking and integrating of equiaxed ice crystals can organize nanofibers into thousands of repeating microscale units with a tortuous channel topology. Owing to the spatially well-defined isotropic structure, the obtained Al2O3·SiO2 nanofiber aerogels exhibit ultralow thermal conductivity, superelasticity, good damage tolerance, and fatigue resistance. These features, together with their natural stability up to 1200 °C, make them highly robust for thermal insulation under extreme thermomechanical environments. Cascading thermal runaway propagation in a high-capacity lithium-ion battery module consisting of LiNi0.8Co0.1Mn0.1O2 cathode, with ultrahigh thermal shock power of 215 kW, can be completely prevented by a thin nanofiber aerogel layer. These findings not only establish a general production route for nanomaterial assemblies that is conventionally challenging, but also demonstrate a high-energy-density battery module configuration with a high safety standard that is critical for practical applications

    Hypoxanthine phosphoribosyl transferase 1 metabolizes temozolomide to activate AMPK for driving chemoresistance of glioblastomas

    No full text
    Abstract Temozolomide (TMZ) is a standard treatment for glioblastoma (GBM) patients. However, TMZ has moderate therapeutic effects due to chemoresistance of GBM cells through less clarified mechanisms. Here, we demonstrate that TMZ-derived 5-aminoimidazole-4-carboxamide (AICA) is converted to AICA ribosyl-5-phosphate (AICAR) in GBM cells. This conversion is catalyzed by hypoxanthine phosphoribosyl transferase 1 (HPRT1), which is highly expressed in human GBMs. As the bona fide activator of AMP-activated protein kinase (AMPK), TMZ-derived AICAR activates AMPK to phosphorylate threonine 52 (T52) of RRM1, the catalytic subunit of ribonucleotide reductase (RNR), leading to RNR activation and increased production of dNTPs to fuel the repairment of TMZ-induced-DNA damage. RRM1 T52A expression, genetic interruption of HPRT1-mediated AICAR production, or administration of 6-mercaptopurine (6-MP), a clinically approved inhibitor of HPRT1, blocks TMZ-induced AMPK activation and sensitizes brain tumor cells to TMZ treatment in mice. In addition, HPRT1 expression levels are positively correlated with poor prognosis in GBM patients who received TMZ treatment. These results uncover a critical bifunctional role of TMZ in GBM treatment that leads to chemoresistance. Our findings underscore the potential of combined administration of clinically available 6-MP to overcome TMZ chemoresistance and improve GBM treatment

    Discovery and Rational Design of Natural-Product-Derived 2‑Phenyl-3,4-dihydro‑2<i>H</i>‑benzo[<i>f</i>]chromen-3-amine Analogs as Novel and Potent Dipeptidyl Peptidase 4 (DPP-4) Inhibitors for the Treatment of Type 2 Diabetes

    No full text
    Starting from the lead isodaphnetin, a natural product inhibitor of DPP-4 discovered through a target fishing docking based approach, a series of novel 2-phenyl-3,4-dihydro-2<i>H</i>-benzo­[<i>f</i>]­chromen-3-amine derivatives as potent DPP-4 inhibitors are rationally designed utilizing highly efficient 3D molecular similarity based scaffold hopping as well as electrostatic complementary methods. Those ingenious drug design strategies bring us approximate 7400-fold boost in potency. Compounds <b>22a</b> and <b>24a</b> are the most potent ones (IC<sub>50</sub> ≈ 2.0 nM) with good pharmacokinetic profiles. Compound <b>22a</b> demonstrated stable pharmacological effect. A 3 mg/kg oral dose provided >80% inhibition of DPP-4 activity within 24 h, which is comparable to the performance of the long-acting control omarigliptin. Moreover, the efficacy of <b>22a</b> in improving the glucose tolerance is also comparable with omarigliptin. In this study, not only promising DPP-4 inhibitors as long acting antidiabetic that are clinically on demand are identified, but the target fish docking and medicinal chemistry strategies were successfully implemented

    Database Resources of the National Genomics Data Center, China National Center for Bioinformation in 2021

    No full text
    The National Genomics Data Center (NGDC), part of the China National Center for Bioinformation (CNCB), provides a suite of database resources to support worldwide research activities in both academia and industry. With the explosive growth of multiomics data, CNCB-NGDC is continually expanding, updating and enriching its core database resources through big data deposition, integration and translation. In the past year, considerable efforts have been devoted to 2019nCoVR, a newly established resource providing a global landscape of SARS-CoV-2 genomic sequences, variants, and haplotypes, as well as Aging Atlas, BrainBase, GTDB (Glycosyltransferases Database), LncExpDB, and TransCirc (Translation potential for circular RNAs). Meanwhile, a series of resources have been updated and improved, including BioProject, BioSample, GWH (Genome Warehouse), GVM (Genome Variation Map), GEN (Gene Expression Nebulas) as well as several biodiversity and plant resources. Particularly, BIG Search, a scalable, one-stop, cross-database search engine, has been significantly updated by providing easy access to a large number of internal and external biological resources from CNCB-NGDC, our partners, EBI and NCBI. All of these resources along with their services are publicly accessible at https://bigd.big.ac.cn
    corecore