5 research outputs found

    Overexpression of SoCYP85A1 Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes’ Activities

    Get PDF
    Black shank caused by Phytophthora nicotianae is one of the most devastating diseases in tobacco production. In this study, we characterized a novel cytochromic resistance gene, SoCYP85A1, from spinach, which was upregulated in response to P. nicotianae infection. Overexpression of SoCYP85A1 in tobacco resulted in remarkable resistance to pathogen inoculation, with diverse resistance levels in different transgenic lines. Meanwhile, a significant accumulation of castasterone (CS) was detected in transgenic plants when challenged with the pathogen. Moreover, activities of antioxidant enzymes were enhanced by SoCYP85A1 in the transgenic lines as compared to those in the wild types inoculated with P. nicotianae. In addition, the alteration of CS content resulted in interference of phytohormone homeostasis. Overall, these results demonstrate that SoCYP85A1 can participate in the defense response to P. nicotianae through the involvement of defense enzymes and by interaction with certain phytohormones. Our findings suggest that SoCYP85A1 could be used as a potential candidate gene for improving resistance to black shank disease in tobacco and other economic crops

    Soybean root transcriptome profiling reveals a nonhost resistant response during Heterodera glycines infection.

    No full text
    Heterodera glycines (soybean cyst nematode, SCN) is one of the most devastating pathogens of soybean worldwide. The compatible and in compatible interactions between soybean and SCN have well documented. Nevertheless, the molecular mechanism of a nonhost resistant response in soybean against SCN infection remains obscure. Toward this end, a global transcriptional comparison was conducted between susceptible and resistant reactions of soybean roots infected by taking advantage of finding a new pathotype of SCN (SCNT). The soybean cultivar Lee, which exhibits resistant to SCNT and susceptible to HG 1.2.3.4.7 (SCNs) was utilized in the expriments. The results highlighted a nonhost resistant response of soybean. Transcriptome analysis indicated that the number of differentially expressed genes (DEGs) in the resistant interaction (3746) was much larger than that in the susceptible interaction (602). A great number of genes acting as intrinsic component of membrane, integral component of membrane, cell periphery and plasma membrance were remarkably enriched only in the resistant interaction, while the taurine and hypotaurine, phenylpropanoid pathway, plant-pathogen interaction and transcript factors were modulated in both interactions. This is the first study to examine genes expression patterns in a soybean genotype in response to invasion by a virulent and avirulent SCN population at the transcriptional level, which will provide insights into the complicate molecular mechanism of the nonhost resistant interaction

    Overexpression of SoCYP85A1, a Spinach Cytochrome p450 Gene in Transgenic Tobacco Enhances Root Development and Drought Stress Tolerance

    No full text
    Brassinosteroids (BRs) play an essential role in plant growth, development, and responses to diverse abiotic stresses. However, previous studies mainly analyzed how exogenous BRs influenced plant physiological reactions to drought stress, therefore, genetic evidences for the endogenous BRs-mediated regulation of plant responses still remain elusive. In this study, a key BRs biosynthetic gene, SoCYP85A1 was cloned from Spinacia oleracea, which has a complete open reading frame of 1,392 bp encoding a 464 amino acid peptide and shares high sequence similarities with CYP85A1 from other plants. The expression of SoCYP85A1 which was higher in leaf compared with root and stem, was induced by treatments of PEG6000, abscisic acid (ABA), low temperature and high salt. Increases in both SoCYP85A1 transcripts and endogenous BRs in transgenic tobacco which resulted in longer primary root and more lateral roots enhanced drought tolerance compared with wild types. The transgenic tobacco accumulated much lower levels of reactive oxygen species and malondialdehyde (MDA) than wild types did, accompanied by significantly higher content of proline and notably enhanced activities of antioxidant enzymes. Besides, transcriptional expressions of six stress-responsive genes were regulated to higher levels in transgenic lines under drought stress. Taken together, our results demonstrated that SoCYP85A1 involves in response to drought stress by promoting root development, scavenging ROS, and regulating expressions of stress-responsive genes

    The identification, characterization, and management of Rotylenchulus reniformis on Cucumis melo in China

    No full text
    Abstract The reniform nematode, Rotylenchulus reniformis, is a sedentary root parasite that poses a significant threat to agricultural production in tropical and subtropical regions worldwide. In 2021–2022, a population of R. reniformis was identified in a melon greenhouse in Jimo District, Qingdao, China. To characterize this population, we employed morphological, morphometric, and molecular methods, which confirmed the identity of the nematodes as R. reniformis. Our investigation revealed that R. reniformis successfully infected the roots of melon plants and laid eggs, which could have led to significant crop damage. This report represents the first documented example of R. reniformis infecting melon plants in China. We evaluated several control strategies to combat this nematode, and our results indicated that soil solarization and the use of fosthiazate or chitooligosaccharide copper in combination with soil solarization were effective measures for managing R. reniformis in a greenhouse setting. In addition, combining soil solarization with chitooligosaccharide copper promoted melon plant growth and increased the relative abundance of microorganisms with biocontrol potential
    corecore