24 research outputs found

    Selected Papers from the 2017 International Conference on Micro/Nanomachines

    No full text
    Thanks to their capabilities of converting various energy into motions, micro/nanomachines are believed to bring about revolutionary changes in many fields[...

    Selected Papers from 2017 International Conference on Micro/Nanomachines

    Get PDF
    The 2017 International Conference on Micro/Nanomachines (http://www.icmnm.org/) was held in Wuhan, China, 25–28 August, 2017. Micro/nanomotors (MNMs), which are defined as micro/nanodevices capable of converting energy into autonomous motion, can be used to pick up, transport, and release various cargoes within a liquid medium. They have important potential applications, for example, in drug delivery, biosensors, protein and cell separation, microsurgeries, and environment remediation. MNMs can be classified into two categories, according to their propulsion mechanism. In this respect, self-propelled MNMs are capable of moving autonomously without external intervention, but they either require toxic fuel or have a short lifespan. MNMs actuated by external fields, such as light, magnetic field, and acoustic waves, are not subject to these problems, do not require toxic fuels, nor give rise to by-products during the motion process. For both self-propelled and field-actuated MNMs, there is still a long way to go before we reach practical applications. The future development of MNMs should be focused on improving the energy conversion efficiency through structure optimization, exploring new propulsion mechanisms and endowing MNMs with environmental responses for self-navigation, detection, and specific operations. In this way, MNMs will approach their practical application in biomedicine, environment treatment, microengineering, etc

    Ultrasmall Fe<sub>2</sub>O<sub>3</sub> Tubular Nanomotors: The First Example of Swarming Photocatalytic Nanomotors Operating in High-Electrolyte Media

    No full text
    Self-propelled chemical micro/nanomotors (MNMs) have demonstrated considerable potential in targeted drug delivery, (bio)sensing, and environmental remediation due to their autonomous nature and possible intelligent self-targeting behaviors (e.g., chemotaxis and phototaxis). However, these MNMs are commonly limited by their primary propulsion mechanisms of self-electrophoresis and electrolyte self-diffusiophoresis, making them prone to quenching in high electrolyte environments. Thus, the swarming behaviors of chemical MNMs in high-electrolyte media remain underexplored, despite their potential to enable the execution of complex tasks in high-electrolyte biological media or natural waters. In this study, we develop ultrasmall tubular nanomotors that exhibit ion-tolerant propulsions and collective behaviors. Upon vertical upward UV irradiation, the ultrasmall Fe2O3 tubular nanomotors (Fe2O3 TNMs) demonstrate positive superdiffusive photogravitaxis and can further self-organize into nanoclusters near the substrate in a reversible manner. After self-organization, the Fe2O3 TNMs exhibit a pronounced emergent behavior, allowing them to switch from random superdiffusions to ballistic motions near the substrate. Even at a high electrolyte concentration (Ce), the ultrasmall Fe2O3 TNMs retain a relatively thick electrical double layer (EDL) compared to their size, and the electroosmotic slip flow in their EDL is strong enough to propel them and induce phoretic interactions among them. As a result, the nanomotors can rapidly concentrate near the substrate and then gather into motile nanoclusters in high-electrolyte environments. This work opens a gate for designing swarming ion-tolerant chemical nanomotors and may expedite their applications in biomedicine and environmental remediation

    Light-Controlled Swarming and Assembly of Colloidal Particles

    No full text
    Swarms and assemblies are ubiquitous in nature and they can perform complex collective behaviors and cooperative functions that they cannot accomplish individually. In response to light, some colloidal particles (CPs), including light active and passive CPs, can mimic their counterparts in nature and organize into complex structures that exhibit collective functions with remote controllability and high temporospatial precision. In this review, we firstly analyze the structural characteristics of swarms and assemblies of CPs and point out that light-controlled swarming and assembly of CPs are generally achieved by constructing light-responsive interactions between CPs. Then, we summarize in detail the recent advances in light-controlled swarming and assembly of CPs based on the interactions arisen from optical forces, photochemical reactions, photothermal effects, and photoisomerizations, as well as their potential applications. In the end, we also envision some challenges and future prospects of light-controlled swarming and assembly of CPs. With the increasing innovations in mechanisms and control strategies with easy operation, low cost, and arbitrary applicability, light-controlled swarming and assembly of CPs may be employed to manufacture programmable materials and reconfigurable robots for cooperative grasping, collective cargo transportation, and micro- and nanoengineering

    Mg-Based Micromotors with Motion Responsive to Dual Stimuli

    No full text
    Mg-based micromotors have emerged as an extremely attractive artificial micro/nanodevice, but suffered from uncontrollable propulsion and limited motion lifetime, restricting the fulfillment of complex tasks. Here, we have demonstrated Mg-based micromotors composed of Mg microspheres asymmetrically coated with Pt and temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) hydrogel layers in sequence. They can implement different motion behaviors stemming from the driving mechanism transformation when encountering catalyzed substrates such as H2O2 and respond to both H2O2 concentration and temperature in aqueous environment. The as-constructed Mg-based micromotors are self-propelled by Pt-catalyzed H2O2 decomposition following the self-consuming Mg-H2O reaction. In this case, they could further generate bilateral bubbles and thus demonstrate unique self-limitation motion like hovering when the phase transformation of PNIPAM is triggered by decreasing temperature or when the H2O2 concentration after permeating across the PNIPAM hydrogel layer is high enough to facilitate bubble nucleation. Our work for the first time provides a stimuli-induced “hovering” strategy for self-propelled micromotors, which endows Mg-based micromotors with an intelligent response to the surroundings besides the significant extension of their motion lifetime

    Light-Programmable Assemblies of Isotropic Micromotors

    No full text
    “Life-like” nonequilibrium assemblies are of increasing significance, but suffering from limited steerability as they are generally based on micro/nanomotors with inherent asymmetry in chemical composition or geometry, of which the vigorous random Brownian rotations disturb the local interactions. Here, we demonstrate that isotropic photocatalytic micromotors, due to the persistent phoretic flow from the illuminated to shadowed side irrespective of their Brownian rotations, experience light-programmable local interactions (reversibly from attraction to repulsion and/or alignment) depending on the direction of the incident lights. Thus, they can be organized into a variety of tunable nonequilibrium assemblies, such as apolar solids (i.e., immobile colloidal crystal), polar liquids (i.e., phototactic colloidal stream), and polar solids (i.e., phototactic colloidal crystal), which can further be “cut” into a predesigned pattern by utilizing the switching motor-motor interactions at superimposed-light edges. This work facilitates the development of active matters and motile functional microdevices

    Hydrophobic Janus Foam Motors: Self-Propulsion and On-The-Fly Oil Absorption

    No full text
    In this work, we for the first time have proposed and fabricated a self-propelled Janus foam motor for on-the-fly oil absorption on water by simply loading camphor/stearic acid (SA) mixture as fuels into one end of the SA-modified polyvinyl alcohol (PVA) foam. The as-fabricated Janus foam motors show an efficient Marangoni effect-based self-propulsion on water for a long lifetime due to the effective inhibition of the rapid release of camphor by the hydrophobic SA in the fuel mixture. Furthermore, they can automatically search, capture, and absorb oil droplets on the fly, and then be spontaneously self-assembled after oil absorption due to the self-propulsion of the motors as well as the attractive capillary interactions between the motors and oil droplets. This facilitates the subsequent collection of the motors from water after the treatment. Since the as-developed Janus foam motors can effectively integrate intriguing behaviors of the self-propulsion, efficient oil capture, and spontaneous self-assembly, they hold great promise for practical applications in water treatment

    Swarming Responsive Photonic Nanorobots for Motile-Targeting Microenvironmental Mapping and Mapping-Guided Photothermal Treatment

    No full text
    Highlights Responsive photonic nanorobots (RPNRs) simultaneously exhibit energetic magnetically-propelled swarming motions, bright stimuli-responsive structural colors, and photothermal conversion. The swarming RPNRs can actively navigate in complex environments and collectively map out local physicochemical conditions (e.g., pH, temperature, or glucose concentration) on the fly via their bright responsive structural colors. The swarming RPNRs can visualize an unknown target (e.g., tumor lesion) via motile-targeting mapping and then guide the external NIR light to initiate localized photothermal treatment
    corecore