33,863 research outputs found

    Analysis of the impact of the inlet boundary conditions in FDS results for air curtain flows in the near-field region

    Get PDF
    CFD results are discussed for planar jet flows, resembling configurations in use for air curtain flows in the context of smoke and heat control in buildings in case of fire. The CFD package FDS (Fire Dynamics Simulator), Version 6.0.1, is used. Special focus is given to the impact of the inlet boundary condition, in combination with the mesh size, on the flow field in the near-field region. Investigation of different slot configurations, including calculations inside a straight rectangular duct ahead of the air slot, reveals a small vena contracta effect when the slot is flush with a solid boundary, leading to an acceleration of the flow in the symmetry plane in the near-field region. More important is the effect of the duct length: starting from a top hat velocity profile, a duct length of about 15 hydraulic diameters is required for the flow to become fully developed at the slot. The vena contracta effect disappears if the co-flow at the nozzle exit is aligned with the jet. The FDS results capture the self-similarity in the far-field jet region, regardless of the inlet configuration

    Function annotation of hepatic retinoid x receptor α based on genome-wide DNA binding and transcriptome profiling.

    Get PDF
    BackgroundRetinoid x receptor α (RXRα) is abundantly expressed in the liver and is essential for the function of other nuclear receptors. Using chromatin immunoprecipitation sequencing and mRNA profiling data generated from wild type and RXRα-null mouse livers, the current study identifies the bona-fide hepatic RXRα targets and biological pathways. In addition, based on binding and motif analysis, the molecular mechanism by which RXRα regulates hepatic genes is elucidated in a high-throughput manner.Principal findingsClose to 80% of hepatic expressed genes were bound by RXRα, while 16% were expressed in an RXRα-dependent manner. Motif analysis predicted direct repeat with a spacer of one nucleotide as the most prevalent RXRα binding site. Many of the 500 strongest binding motifs overlapped with the binding motif of specific protein 1. Biological functional analysis of RXRα-dependent genes revealed that hepatic RXRα deficiency mainly resulted in up-regulation of steroid and cholesterol biosynthesis-related genes and down-regulation of translation- as well as anti-apoptosis-related genes. Furthermore, RXRα bound to many genes that encode nuclear receptors and their cofactors suggesting the central role of RXRα in regulating nuclear receptor-mediated pathways.ConclusionsThis study establishes the relationship between RXRα DNA binding and hepatic gene expression. RXRα binds extensively to the mouse genome. However, DNA binding does not necessarily affect the basal mRNA level. In addition to metabolism, RXRα dictates the expression of genes that regulate RNA processing, translation, and protein folding illustrating the novel roles of hepatic RXRα in post-transcriptional regulation

    Solving multiple-criteria R&D project selection problems with a data-driven evidential reasoning rule

    Full text link
    In this paper, a likelihood based evidence acquisition approach is proposed to acquire evidence from experts'assessments as recorded in historical datasets. Then a data-driven evidential reasoning rule based model is introduced to R&D project selection process by combining multiple pieces of evidence with different weights and reliabilities. As a result, the total belief degrees and the overall performance can be generated for ranking and selecting projects. Finally, a case study on the R&D project selection for the National Science Foundation of China is conducted to show the effectiveness of the proposed model. The data-driven evidential reasoning rule based model for project evaluation and selection (1) utilizes experimental data to represent experts' assessments by using belief distributions over the set of final funding outcomes, and through this historic statistics it helps experts and applicants to understand the funding probability to a given assessment grade, (2) implies the mapping relationships between the evaluation grades and the final funding outcomes by using historical data, and (3) provides a way to make fair decisions by taking experts' reliabilities into account. In the data-driven evidential reasoning rule based model, experts play different roles in accordance with their reliabilities which are determined by their previous review track records, and the selection process is made interpretable and fairer. The newly proposed model reduces the time-consuming panel review work for both managers and experts, and significantly improves the efficiency and quality of project selection process. Although the model is demonstrated for project selection in the NSFC, it can be generalized to other funding agencies or industries.Comment: 20 pages, forthcoming in International Journal of Project Management (2019

    Experimental study of the effectiveness of air curtains of variable width and injection angle to block fire-induced smoke in a tunnel configuration

    Get PDF
    Small-scale experiments have been conducted to study the sealing effect of an air curtain for fire-induced smoke confinement in a tunnel configuration. The processed data confirmed the results obtained earlier from blind Computational Fluid Dynamics (CFD) simulations [1] using the Fire Dynamics Simulator (FDS) 6.5.3 [2,3]. Furthermore, the CFD simulations provided complementary information on the detailed flow and temperature fields which are difficult to obtain in experiments with the available techniques. A parametric study is performed, covering a range of air curtain velocities, slot widths, injection angles and total fire heat release rates (HRRs). The momentum ratio R, defined as the ratio of the vertically downward air curtain momentum to the horizontal smoke layer momentum at the position of the air curtain, is confirmed to be a key parameter for the air curtain performance. A ratio R ≈ 10 is recommended for the optimum sealing effect in terms of smoke confinement. In addition, two other important parameters that determine the performance of air curtains for smoke confinement are presented. The first parameter is the dimensionless shape factor AR (AR = Width/Length) that characterizes the dilution effect of the air curtain jet. The second parameter is the injection angle θ that characterizes the horizontal force of the air curtain. The air curtain sealing effectiveness increases with both the increase of slot width (shape factor AR) and injection angle (θ). The air curtain width has a limited influence on the performance of the air curtain whilst the injection angle has a more significant influence on the sealing effectiveness of the air curtain for the scenarios considered in this study. An optimal injection angle of 30° inclined to the fire source is recommended in the engineering design of the air curtain for smoke confinement for situations where the fire location can be pre-determined to be only at one side of an air curtain

    Parametric CFD study of an air curtain for smoke confinement

    Get PDF
    The CFD simulation of an air curtain for smoke confinement in case of fire is conducted by using Fire Dynamics Simulator (FDS 6.0.1). It is a working progress of preliminary simulation for preparation of small scale experiment. The set-up is a wind tunnel configuration. Special focus is given to the smoke flow field, jet velocity and temperature distribution in the protected area. Predicted ceiling jet properties are compared with analytical equations. Investigation of different jet velocities reveals that the smoke flow field in the wind tunnel is strongly influenced by the operation of air curtain. Jet velocity between 0.75m-1m/s is recommended for the study at hand
    • …
    corecore