4,558 research outputs found

    Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN

    Full text link
    The strongly-constrained physics-informed neural network (SCPINN) is proposed by adding the information of compound derivative embedded into the soft-constraint of physics-informed neural network(PINN). It is used to predict nonlinear dynamics and the formation process of bright and dark picosecond optical solitons, and femtosecond soliton molecule in the single-mode fiber, and reveal the variation of physical quantities including the energy, amplitude, spectrum and phase of pulses during the soliton transmission. The adaptive weight is introduced to accelerate the convergence of loss function in this new neural network. Compared with the PINN, the accuracy of SCPINN in predicting soliton dynamics is improved by 5-11 times. Therefore, the SCPINN is a forward-looking method to study the modeling and analysis of soliton dynamics in the fiber

    OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation

    Get PDF
    Rice is a major dietary source of the toxic metalloid arsenic (As). Reducing its accumulation in rice (Oryza sativa) grain is of critical importance to food safety. Rice roots take up arsenate and arsenite depending on the prevailing soil conditions. The first step of arsenate detoxification is its reduction to arsenite, but the enzyme(s) catalyzing this reaction in rice remains unknown. Here, we identify OsHAC1;1 and OsHAC1;2 as arsenate reductases in rice. OsHAC1;1 and OsHAC1;2 are able to complement an Escherichia coli mutant lacking the endogenous arsenate reductase and to reduce arsenate to arsenite. OsHAC1:1 and OsHAC1;2 are predominantly expressed in roots, with OsHAC1;1 being abundant in the epidermis, root hairs, and pericycle cells while OsHAC1;2 is abundant in the epidermis, outer layers of cortex, and endodermis cells. Expression of the two genes was induced by arsenate exposure. Knocking out OsHAC1;1 or OsHAC1;2 decreased the reduction of arsenate to arsenite in roots, reducing arsenite efflux to the external medium. Loss of arsenite efflux was also associated with increased As accumulation in shoots. Greater effects were observed in a double mutant of the two genes. In contrast, overexpression of either OsHAC1;1 or OsHAC1;2 increased arsenite efflux, reduced As accumulation, and enhanced arsenate tolerance. When grown under aerobic soil conditions, overexpression of either OsHAC1;1 or OsHAC1;2 also decreased As accumulation in rice grain, whereas grain As increased in the knockout mutants. We conclude that OsHAC1;1 and OsHAC1;2 are arsenate reductases that play an important role in restricting As accumulation in rice shoots and grain

    The UDP-glucosyltransferase multigene family in Bombyx mori

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glucosidation plays a major role in the inactivation and excretion of a great variety of both endogenous and exogenous compounds. A class of UDP-glycosyltransferases (UGTs) is involved in this process. Insect UGTs play important roles in several processes, including detoxication of substrates such as plant allelochemicals, cuticle formation, pigmentation, and olfaction. Identification and characterization of <it>Bombyx mori </it>UGT genes could provide valuable basic information for this important family and explain the detoxication mechanism and other processes in insects.</p> <p>Results</p> <p>Taking advantage of the newly assembled genome sequence, we performed a genome-wide analysis of the candidate UGT family in the silkworm, <it>B. mori</it>. Based on UGT signature and their similarity to UGT homologs from other organisms, we identified 42 putative silkworm UGT genes. Most of them are clustered on the silkworm chromosomes, with two major clusters on chromosomes 7 and 28, respectively. The phylogenetic analysis of these identified 42 UGT protein sequences revealed five major groups. A comparison of the silkworm UGTs with homologs from other sequenced insect genomes indicated that some UGTs are silkworm-specific genes. The expression patterns of these candidate genes were investigated with known expressed sequence tags (ESTs), microarray data, and RT-PCR method. In total, 36 genes were expressed in tissues examined and showed different patterns of expression profile, indicating that these UGT genes might have different functions.</p> <p>Conclusion</p> <p><it>B. mori </it>possesses a largest insect UGT gene family characterized to date, including 42 genes. Phylogenetic analysis, genomic organization and expression profiles provide an overview for the silkworm UGTs and facilitate their functional studies in future.</p

    YY1 directly interacts with myocardin to repress the triad myocardin/SRF/CArG box-mediated smooth muscle gene transcription during smooth muscle phenotypic modulation

    Get PDF
    Yin Yang 1 (YY1) regulates gene transcription in a variety of biological processes. In this study, we aim to determine the role of YY1 in vascular smooth muscle cell (VSMC) phenotypic modulation both in vivo and in vitro. Here we show that vascular injury in rodent carotid arteries induces YY1 expression along with reduced expression of smooth muscle differentiation markers in the carotids. Consistent with this finding, YY1 expression is induced in differentiated VSMCs in response to serum stimulation. To determine the underlying molecular mechanisms, we found that YY1 suppresses the transcription of CArG box-dependent SMC-specific genes including SM22α, SMα-actin and SMMHC. Interestingly, YY1 suppresses the transcriptional activity of the SM22α promoter by hindering the binding of serum response factor (SRF) to the proximal CArG box. YY1 also suppresses the transcription and the transactivation of myocardin (MYOCD), a master regulator for SMC-specific gene transcription by binding to SRF to form the MYOCD/SRF/CArG box triad (known as the ternary complex). Mechanistically, YY1 directly interacts with MYOCD to competitively displace MYOCD from SRF. This is the first evidence showing that YY1 inhibits SMC differentiation by directly targeting MYOCD. These findings provide new mechanistic insights into the regulatory mechanisms that govern SMC phenotypic modulation in the pathogenesis of vascular diseases

    Co-inhibition of HDAC and MLL-menin interaction targets MLL-rearranged acute myeloid leukemia cells via disruption of DNA damage checkpoint and DNA repair.

    Get PDF
    While the aberrant translocation of the mixed-lineage leukemia (MLL) gene drives pathogenesis of acute myeloid leukemia (AML), it represents an independent predictor for poor prognosis of adult AML patients. Thus, small molecule inhibitors targeting menin-MLL fusion protein interaction have been emerging for the treatment of MLL-rearranged AML. As both inhibitors of histone deacetylase (HDAC) and menin-MLL interaction target the transcription-regulatory machinery involving epigenetic regulation of chromatin remodeling that governs the expression of genes involved in tumorigenesis, we hypothesized that these two classes of agents might interact to kill MLL-rearranged (MLL-r) AML cells. Here, we report that the combination treatment with subtoxic doses of the HDAC inhibitor chidamide and the menin-MLL interaction inhibitor MI-3 displayed a highly synergistic anti-tumor activity against human MLL-r AML cells in vitro and in vivo, but not those without this genetic aberration. Mechanistically, co-exposure to chidamide and MI-3 led to robust apoptosis in MLL-r AML cells, in association with loss of mitochondrial membrane potential and a sharp increase in ROS generation. Combined treatment also disrupted DNA damage checkpoint at the level of CHK1 and CHK2 kinases, rather than their upstream kinases (ATR and ATM), as well as DNA repair likely via homologous recombination (HR), but not non-homologous end joining (NHEJ). Genome-wide RNAseq revealed gene expression alterations involving several potential signaling pathways (e.g., cell cycle, DNA repair, MAPK, NF-κB) that might account for or contribute to the mechanisms of action underlying anti-leukemia activity of chidamide and MI-3 as a single agent and particularly in combination in MLL-r AML. Collectively, these findings provide a preclinical basis for further clinical investigation of this novel targeted strategy combining HDAC and Menin-MLL interaction inhibitors to improve therapeutic outcomes in a subset of patients with poor-prognostic MLL-r leukemia
    corecore