26 research outputs found

    Cellulose-Based Thermoplastics and Elastomers via Controlled Radical Polymerization

    Get PDF
    This chapter is concerned with the recent progress in cellulose-based thermoplastic plastics and elastomers via homogeneous controlled radical polymerizations (CRPs), including atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and nitroxide-mediated polymerization (NMP). The first section is a brief introduction of cellulose and cellulose graft copolymers. The second section is recent developments in cellulose graft copolymers synthesized by CRPs. The third part is a perspective on design and applications of novel cellulose-based materials. The combination of cellulose and CRPs can provide new opportunities for sustainable materials ranging from thermoplastics to elastomers, and these fascinating materials can find a pyramid of applications in our daily life in the near future

    One-Pot Synthesis of N,N′-dialkylureas via Carbonylation of Amines with CO2 Applying Y0.08Zr0.92O1.96 Mixed Oxide (YSZ-8) as a Heterogeneous Catalyst

    No full text
    One-pot synthesis of N,N′-dialkylureas were successfully achieved from catalytic carbonylation of aliphatic primary amines with CO2 as the carbon source and Y0.08Zr0.92O1.96 mixed oxide (Yttria-stabilized zirconia, YSZ-8) as the heterogeneous catalyst. The yield of the target product was obtained up to 80.60% from a 48 h reaction with an aliphatic primary amine and 3.0 MPa CO2 in N-methyl-2-pirrolidinone at 160 °C. A multi-pronged mechanistic study was carried out where factors that might influence the reaction efficiency were studied, including catalyst structure, substrates basicity, CO2 pressure, solvent polarity and reaction time. The presence of oxygen vacancies in YSZ-8 was found to be essential for the carbonylation process by creating additional reduction potential for the activation of CO2 which would lead to the key intermediate species

    Ionic liquids modified cobalt/ZSM-5 as a highly efficient catalyst for enhancing the selectivity towards KA oil in the aerobic oxidation of cyclohexane

    No full text
    The industrial oxidation of cyclohexane is currently performed with very low conversion level, i.e. 4-6% conversion and poor selectivity for cyclohexanone and cyclohexanol (K-A oil), i.e.70-85%, at above 150oC reaction temperature and above 10atm reaction pressure using molecular oxygen oxidant and homogeneous catalyst. Several disadvantages are, however, associated with the process, such as, complex catalyst-product separation, high power input, and low safe operation. Therefore, the oxidation of cyclohexane using heterogeneous catalyst oxygen oxidant from air at mild conditions has received particular attention. Aerobic oxidation of cyclohexane over ionic liquids modified cobalt/ZSM-5 (IL-Co/ZSM-5) in absence of solvents was developed in this article. The prepared catalysts were characterized by XRD, FT-IR, N2 adsorption-desorption, SEM, TEM and XPS analyses. The influence of reaction parameters on the oxidation of cyclohexane was researched, such as the various catalysts, reaction temperature, reaction time, and the reaction pressure, on the process. Highly selective synthesis of KA oil was performed by aerobic oxidation of cyclohexane using ionic liquids modified cobalt/ZSM-5 (IL-Co/ZSM-5) as the catalyst in absence of solvents for the first time. A selectivity of up to 93.6% of KA oil with 9.2% conversion of cyclohexane was produced at 150℃ and 1.5 MPa after 3 h, with about 0.1 mol cyclohexane, C7mimHSO4-Co/ZSM-5 catalyst equal to 6.0 wt%, respectively. The induction period of oxidation was greatly shortened when the ionic liquid was supported on ZSM-5. The catalyst was easy to centrifuge and was reused after five cycles. It was found that both the characterization and performance of the catalysts revealed that both the presence of oxygen vacancies with incorporation of Co ions into the framework of ZSM-5 and the introduction of C7mimHSO4 into the ZSM-5 leads to the both satisfactory selectivity and robust stability of the C7mimHSO4-Co/ZSM-5 heterogeneous catalyst

    Hollow mesoporous silica supported PtIr bimetal catalysts for selective hydrogenation of phenol: significant promotion effect of iridium

    No full text
    Selective hydrogenation of phenol is of great significant for the production of Nylon 6. Herein, highly efficient and stable Ir promoted Pt catalysts for the hydrogenation of phenol are prepared by deposition of Pt-Ir nanoparticles onto hollow mesoporous silica spheres (HMSs) through a facile wet-impregnation and H-2 reduction method. The obtained PtIr/HMS catalyst with Ir/Pt molar ratio of 0.1 shows a highest hydrogenation rate of 4255 mmol h(-1) gPt(-1) with cyclohexanone selectivity of 85% at 50 degrees C and 0.5 MPa of pH(2), which is 3 times and 8.6 times higher than that of the mono Pt/HMS catalyst and commercial Pt catalyst, respectively. The trace addition of Ir promoter essentially contributes to the enhanced hydrogenation activity by improving the metal dispersion of Pt nanoparticles and promoting the charge transfer between the Pt and Ir. This work provides an effective protocol in developing high performance catalysts for phenol hydrogenation under mild reaction conditions

    Potential Anticancer Mechanisms of a Novel EGFR/DNA-Targeting Combi-Molecule (JDF12) against DU145 Prostate Cancer Cells: An iTRAQ-Based Proteomic Analysis

    No full text
    The development of multitargeting drugs is an emerging trend in cancer research. To promote further development and clinical application of multitargeting drugs, this research was performed. MTT assay and flow cytometry of Annexin V/propidium iodide staining were used to confirm the proapoptotic efficacy of a novel combi-targeting molecule, JDF12, against DU145 prostate cancer (PCa) cells. Differentially expressed proteins between control and JDF12-treated cultures were revealed by isobaric tags for relative and absolute quantitation (iTRAQ), and part of them was confirmed by quantitative PCR. Differentially expressed proteins were further analyzed for function, pathway association, and protein−protein interactions using GO, KEGG, and STRING databases. A total of 119 differentially expressed proteins, 70 upregulated and 49 downregulated, were implicated in the anticancer effects of JDF12. Many of these proteins are involved in biosynthesis, response to stress, energy metabolism, and signal transduction. This study provides important information for understanding the anti-PCa mechanisms of JDF12, and well-designed combi-targeting drugs may possess stronger anticancer efficacy than single-targeting drugs and are thus promising candidates for clinical application

    Safety and Efficacy of First-Line Treatments for Chemotherapy-Naive Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Indirect Comparison

    No full text
    Recently, several drugs have been introduced for the first-line treatment of chemotherapy-naive metastatic castration-resistant prostate cancer (mCRPC), but few studies have compared treatment outcomes directly. This indirect comparison among 10 clinical trials (n = 4870 patients) retrieved from PubMed, Web of Science, Cochrane Collaboration, and ClinicalTrails.gov was performed to assess the safety and efficacy of docetaxel, cabazitaxel, abiraterone, enzalutamide, and sipuleucel-T for the initial treatment of mCRPC. No significant differences in primary outcome (overall survival) were found among initial treatments. However, docetaxel had the highest probability (37.53%) of being the most effective, but at the cost of more adverse events, while enzalutamide was associated with the best secondary outcomes (prostate-specific antigen response, progression-free survival, quality of life, and adverse event profile). Thus, docetaxel is recommended as the first agent used for the chemotherapy of mCRPC, while enzalutamide is recommended as the first nonchemotherapy treatment. Additional clinical trials are needed to confirm these findings and establish the optimal order for multidrug treatment of mCRPC

    Uniformly dispersed carbon-supported bimetallic ruthenium-platinum electrocatalysts for the methanol oxidation reaction

    No full text
    Reducing the Pt-based electrocatalysts to sub-nanometer sizes is an effective way to achieve high utilization of noble metals. Herein, we report a successive route to synthesize carbon-supported bimetallic ruthenium-platinum electrocatalysts (Ru-Pt/C) with uniform dispersion and fine sizes. In this strategy, carbon-supported Ru nanoparticles (Ru/C) with a mean size of 1.4 nm are firstly prepared in a mixture of ethylene glycol and water, and the Pt precursors are then reduced in the presence of pre-formed Ru/C. The average diameter of the bimetallic Ru-Pt particles on carbon supports is 1.9 nm, which corresponds to one to two Pt layers deposited on the surface of Ru seeds. The as-prepared bimetallic Ru-Pt/C electrocatalysts are analyzed by the CO stripping voltammetry, a diagnostic electrochemical tool. Compared with the commercial PtRu/C catalyst and the control PtRu/C prepared by a conventional co-reduction method, the bimetallic Ru-Pt/C has higher electrochemical surface area (92.5 m(2) g(-1)) and mass activity (483 A g(-1)) for methanol oxidation reaction. The strategy reported in this study is effective to produce fine bimetallic Ru-Pt particles (less than 2.0 nm) with uniform dispersion and high activity.</p
    corecore