38,174 research outputs found
ALTKAL: An optimum linear filter for GEOS-3 altimeter data
ALTKAL is a computer program designed to smooth sea surface height data obtained from the GEOS 3 altimeter, and to produce minimum variance estimates of sea surface height and sea surface slopes, along with their standard derivations. The program operates by processing the data through a Kalman filter in both the forward and backward directions, and optimally combining the results. The sea surface height signal is considered to have a geoid signal, modeled by a third order Gauss-Markov process, corrupted by additive white noise. The governing parameters for the signal and noise processes are the signal correlation length and the signal-to-noise ratio. Mathematical derivations of the filtering and smoothing algorithms are presented. The smoother characteristics are illustrated by giving the frequency response, the data weighting sequence and the transfer function of a realistic steady-state smoother example. Based on nominal estimates for geoidal undulation amplitude and correlation length, standard deviations for the estimated sea surface height and slope are 12 cm and 3 arc seconds, respectively
Jamming Transition of Point-to-Point Traffic Through Cooperative Mechanisms
We study the jamming transition of two-dimensional point-to-point traffic
through cooperative mechanisms using computer simulation. We propose two
decentralized cooperative mechanisms which are incorporated into the
point-to-point traffic models: stepping aside (CM-SA) and choosing alternative
routes (CM-CAR). Incorporating CM-SA is to prevent a type of ping-pong jumps
from happening when two objects standing face-to-face want to move in opposite
directions. Incorporating CM-CAR is to handle the conflict when more than one
object competes for the same point in parallel update. We investigate and
compare four models mainly from fundamental diagrams, jam patterns and the
distribution of cooperation probability. It is found that although it decreases
the average velocity a little, the CM-SA increases the critical density and the
average flow. Despite increasing the average velocity, the CM-CAR decreases the
average flow by creating substantially vacant areas inside jam clusters. We
investigate the jam patterns of four models carefully and explain this result
qualitatively. In addition, we discuss the advantage and applicability of
decentralized cooperation modeling.Comment: 17 pages, 14 figure
- …