44,695 research outputs found

    Dust Evolution and the Formation of Planetesimals

    Full text link
    The solid content of circumstellar disks is inherited from the interstellar medium: dust particles of at most a micrometer in size. Protoplanetary disks are the environment where these dust grains need to grow at least 13 orders of magnitude in size. Our understanding of this growth process is far from complete, with different physics seemingly posing obstacles to this growth at various stages. Yet, the ubiquity of planets in our galaxy suggests that planet formation is a robust mechanism. This chapter focuses on the earliest stages of planet formation, the growth of small dust grains towards the gravitationally bound "planetesimals", the building blocks of planets. We will introduce some of the key physics involved in the growth processes and discuss how they are expected to shape the global behavior of the solid content of disks. We will consider possible pathways towards the formation of larger bodies and conclude by reviewing some of the recent observational advances in the field.Comment: 43 pages, 6 figures. Chapter in International Space Science Institute (ISSI) Book on "The Disk in Relation to the Formation of Planets and their Proto-atmospheres", published in Space Science Reviews by Springe

    Global Distribution of Water Vapor and Cloud Cover--Sites for High Performance THz Applications

    Full text link
    Absorption of terahertz radiation by atmospheric water vapor is a serious impediment for radio astronomy and for long-distance communications. Transmission in the THz regime is dependent almost exclusively on atmospheric precipitable water vapor (PWV). Though much of the Earth has PWV that is too high for good transmission above 200 GHz, there are a number of dry sites with very low attenuation. We performed a global analysis of PWV with high-resolution measurements from the Moderate Resolution Imaging Spectrometer (MODIS) on two NASA Earth Observing System (EOS) satellites over the year of 2011. We determined PWV and cloud cover distributions and then developed a model to find transmission and atmospheric radiance as well as necessary integration times in the various windows. We produced global maps over the common THz windows for astronomical and satellite communications scenarios. Notably, we show that up through 1 THz, systems could be built in excellent sites of Chile, Greenland and the Tibetan Plateau, while Antarctic performance is good to 1.6 THz. For a ground-to-space communication link up through 847 GHz, we found several sites in the Continental United States where mean atmospheric attenuation is less than 40 dB; not an insurmountable challenge for a link.Comment: 15 pages, 23 figure

    Transformation Optics scheme for two-dimensional materials

    Get PDF
    Two dimensional optical materials, such as graphene can be characterized by a surface conductivity. So far, the transformation optics schemes have focused on three dimensional properties such as permittivity ϵ\epsilon and permeability μ\mu. In this paper, we use a scheme for transforming surface currents to highlight that the surface conductivity transforms in a way different from ϵ\epsilon and μ\mu. We use this surface conductivity transformation to demonstrate an example problem of reducing scattering of plasmon mode from sharp protrusions in graphene

    Photon Emission Rate Engineering using Graphene Nanodisc Cavities

    Get PDF
    In this work, we present a systematic study of the plasmon modes in a system of vertically stacked pair of graphene discs. Quasistatic approximation is used to model the eigenmodes of the system. Eigen-response theory is employed to explain the spatial dependence of the coupling between the plasmon modes and a quantum emitter. These results show a good match between the semi-analytical calculation and full-wave simulations. Secondly, we have shown that it is possible to engineer the decay rates of a quantum emitter placed inside and near this cavity, using Fermi level tuning, via gate voltages and variation of emitter location and polarization. We highlighted that by coupling to the bright plasmon mode, the radiative efficiency of the emitter can be enhanced compared to the single graphene disc case, whereas the dark plasmon mode suppresses the radiative efficiency

    Stability of extemporaneously prepared ophthalmic solutions for mydriasis

    Get PDF
    Purpose Results of an evaluation of the physical and chemical stability of extemporaneously prepared adult and pediatric ophthalmic solutions containing combinations of phenylephrine, tropicamide, and cyclopentolate are reported. Methods A stability study was conducted to help determine the feasibility of innovative formulations to meet an unmet clinical need for combination mydriatic ophthalmic eyedrops. An adult mydriatic ophthalmic solution containing phenylephrine hydrochloride 2.5% and tropicamide 1.0% and a pediatric formulation containing phenylephrine hydrochloride 2.5%, tropicamide 0.5%, and cyclopentolate hydrochloride 0.5% were prepared using proper aseptic techniques. Triplicate samples of each formulation were stored for 60 days at refrigeration temperatures (2–8 °C) and analyzed on day 0 and days 7, 14, 28, and 60. At each time point, the stability samples were assessed by visual inspection, pH measurement, and stability-indicating high-performance liquid chromatography (HPLC) analysis. Results Over the 60-day storage period, there was no significant change in the visual appearance or pH level of any of the adult or pediatric solution samples. The results of HPLC analysis indicated that all samples retained 97–102% of the initial drug concentrations for up to 60 days. Conclusion Both adult and pediatric ophthalmic formulations containing combinations of phenylephrine, tropicamide, and cyclopentolate were stable physically and chemically for up to 60 days when stored at refrigeration temperatures (2–8 °C)
    corecore