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Transformation Optics scheme for two-dimensional materials
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Two dimensional optical materials, such as graphene can be characterized by a surface conductivity. So far,
the transformation optics schemes have focused on three dimensional properties such as permittivity ǫ and
permeability µ. In this paper, we use a scheme for transforming surface currents to highlight that the surface
conductivity transforms in a way different from ǫ and µ. We use this surface conductivity transformation to
demonstrate an example problem of reducing scattering of plasmon mode from sharp protrusions in graphene.
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Transformation optics[1, 2] has proved to be a pow-
erful technique to control propagation of electromag-
netic waves. The basic idea is that under coordi-
nate transformations, Maxwell’s equations remain form-
invariant, provided the material parameters are appro-
priately modified. Then the wave electromagnetic wave
propagation in the transformed medium can be thought
of as occurring in the original medium. Numerous ap-
plications of this technique have been proposed and
demonstrated. Some examples are invisiblity cloaks[3–
5], waveguides with sharp bends[6], subwavelength im-
age manipulation[7], etc.
With the recent discovery of two dimensional materi-

als such as graphene[8] and MoS2[9, 10], there is an enor-
mous interest in studying their optical properties[11].
Such materials are usually characterized by a surface
conductivity instead of the volume conductivity which
describes the usual three dimensional materials. As such
it is expected that the techniques of transformation op-
tics, as is usually employed, will have to be modified to
take into account the change in the dimensionality of the
material parameter. To our knowledge, this is the first
time that a full transformation optics scheme involving
surface conductivity has been considered. Although im-
plementing transformation optics using spatial modula-
tion of surface conductivity has been proposed in [12], we
note that they do not talk about transformations which
can take the graphene out of the plane. In other words,
they only consider flat graphene.
In this paper, we will show how surface conductivity

transforms under arbitrary coordinate transformations.
We will find that the transformation rule is indeed dif-
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ferent compared to the bulk conductivity. Then we will
present an example to show how this surface conductiv-
ity transformation works for the simple case of a two di-
mensional transformation. We show how to reduce plas-
mon scattering from a triangular protrusion in graphene.
It is indeed possible to implement such a surface conduc-
tivity transformation in graphene using gate voltage[13]
and chemical doping.
Let us consider the case of a 2D material sitting in be-

tween two dielectric materials. The source free Ampère’s
Law is written in this case as:

∇×H = ǫ0ǫ̂bulk
∂E

∂t
+

∂Ps

∂t
|∇F (r)|δ(F (r)) (1)

where F (r) = 0 is the equation of the surface discon-
tinuity, ǫ is the permittivity of the surrounding three
dimensional materials and Ps is the surface polarization
of the two dimensional material. The time derivative of
this surface polarization gives rise to a surface current
density:

Js =
∂Ps

∂t
= σ2DE|| = σ̂E (2)

For the usual case of the interface of two bulk mate-
rials, this term is absent, however for 2D materials we
need to retain this term in the derivation of the bound-
ary conditions due to the presence of the Dirac delta
function in Eq.1. Thus, in this case of a finite surface
electrical conductivity σ2D, the boundary condition for
the tangential magnetic field can be written in terms of
a surface current[14]

n̂×∆H = Js = σ̂E (3)

where Js is the surface current density, n̂ is the unit
normal to the surface and σ̂ is the surface conductivity
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Fig. 1. Coordinate transformation which compresses a triangular region towards the top and rarefies it at the bottom. A sharp
protrusion in the graphene is produced at the center.

tensor. For instance, an isotropic surface conductivity
would be represented in terms of the basis {|t1〉, |t2〉,
|n〉}, as σ̂ = σ2D(|t1〉 〈t1| + |t2〉 〈t2|). Here |t1〉 and |t2〉
are the two orthonormal local tangential vectors and |n〉
is the local normal unit vector. Our aim here is to find
out the transformation rule for the σ̂ tensor.
Based on Eq.1 and 2, the permittivity can be thought

of as containing a Dirac delta function:

ǫ̂ = ǫ̂bulk +
i|∇F (r)|δ(F (r))

ωǫ0
σ̂ (4)

Now, applying the usual transformation rule for permit-
tivity ǫ̂′ = Λǫ̂ΛT / det(Λ) to Eq.4 and the standard rule
for the change of variables in a delta function, we arrive
at the result:

σ̂′ =
Λσ̂ΛT

|(Λ−1)T n̂| det(Λ)
(5)

where n̂(r) is the local surface normal given by
∇F (r)/|∇F (r)| and Λ is the transformation matrix

Λi′

i = ∂xi′/∂xi. The additional factor explicitly enters
the surface conductivity tensor because a compression
in the plane normal for the 2D material, should produce
no transformation of the surface conductivity physically.
But the det(Λ) factor does contain this compression fac-
tor. Therefore surface conductivity further requires a
multiplicative factor for the renormalization of the sur-
face delta function. Equivalently, one could say that the
normal unit vector, after transformation, does not re-
main a unit vector. Hence the additional factor needs to
be put in to ensure that in the transformed medium, n′

is indeed a unit vector.
Taking cue from the SPP wave adapter proposed in

[15, 16], we illustrate that the surface conductivity trans-
formation indeed works, by using the transformation
shown in Fig.1.
In the absence of any transformation optics, the plas-

mon mode propagating along the graphene sheet from
the far left, would suffer substantial scattering into the
free space modes. Such radiative loss is typically de-
pendent on the radius of curvature of the bump. For
instance, if the graphene plasmon mode is highly con-
fined compared to the radius of curvature of the bump,

then it is possible to achieve smaller radiative loss of the
plasmon mode[17]. In our current formalism however,
we are able to tackle arbitrary radii of curvatures. To
subvert this scattering one can employ the well known
technique of transformation optics. This scheme would
require us to modify the permittivity and permeability
tensors in the region surrounding the sharp bump. How-
ever, just this would not be enough to prevent scattering
since as we mentioned earlier, the surface conductivity
also needs to be transformed in a way which depends on
the details of the transformation we wish to carry out.
Hence we consider three cases: A) protrusion in

graphene with no transformation optics employed, B)
transformation optics employed but surface conductiv-
ity is not transformed and C) transformation optics em-
ployed for the surface conductivity as well as the bulk
parameters. The results are shown in Fig.2. Finite ele-
ment simulations in Fig.2 were carried out using comsol
multiphysics by employing a surface current boundary
condition to represent the graphene. The surrounding
media in the un-transformed case is assumed to be vac-
uum, for this example. But we have performed tests,
which are not presented here with substrates of non-
unity refractive indices as well. For simplicity we use
only the imaginary part of the surface conductivity of
graphene at a doping level of EF = 0.5 eV at zero tem-
perature. The excitation frequency for this test case is
0.25 eV, so the numerical value of the in-plane untrans-
formed surface conductivity is σ = ı 1.46× 10−4 S.
Mathematically, the transformation in the four regions

shown in Fig.1 is given as follows:

x′ = x

y′ = y −
tanβ

tanα
|y|+ (a− |x|) tan β (6)

z′ = z

Everywhere outside the four regions, there is no change.
Note that we have chosen a linear map only for the pur-
pose of demonstration of the main idea of surface con-
ductivity transformation. The transformation we pro-
vided in Eq.5 is valid in general, beyond the linear ap-
proximation. In principle, other transformations can be
employed keeping in mind the material constraints. For
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instance, quasi-conformal maps[18] which have been ap-
plied in the context of plasmonics elsewhere[19], could be
employed; or, in the case of rotationally symmetric three
dimensional bumps of various shapes, it might be pos-
sible to design isotropic graphene-surface conductivity
and the environment-permittivity profile obtained using
techniques similar to [20].
The Jacobian Λ is given by:

Λ =





1 0 0
− sgn(x) tanβ 1− sgn(y) tanβ/ tanα 0

0 0 1



 (7)

Then the transformed bulk material parameters in the
four regions are given, in the {|x〉 , |y〉 , |z〉} basis, as fol-
lows:

ǫ′, µ′ =
ΛΛT

detΛ
=

1

1− sgn(y) tanβ/ tanα





1 −sgn(x) tan β 0
−sgn(x) tan β 1− 2 sgn(y) tanβ/ tanα+ (tanβ/ sinα)2 0

0 0 1



 (8)

The new surface conductivity tensor σ̂′ is expressed using Eq.5, with n̂ = ŷ, as

σ̂′ =
Λσ̂ΛT

|(Λ−1)T ŷ| detΛ
= σ2D





cosβ −sgn(x) sin β 0
−sgn(x) sin β sinβ tanβ 0

0 0 cosβ



 (9)

where σ2D is the scalar surface conductivity of the un-
transformed graphene.
Now, from Eq.9, it might appear that the surface

conductivity tensor has off-diagonal components, which
would be difficult to achieve experimentally. However,
one must remember that the transformed tensor is given
in the {|x〉 , |y〉 , |z〉} basis. To get more physical insight,
we go the {|t〉 , |n〉 , |z〉} basis, where |t〉 is a unit vec-
tor locally tangential to the graphene and |n〉 is locally
normal to graphene surface. Since the z−direction is un-
changed in this example, we keep the same unit vector in
that direction. A basis change can be carried out using
[σ̂′]tnz = A[σ̂′]xyzA

†, where A is the basis change matrix
composed of projections of the new basis vectors on the
old basis vectors. In our case, graphene is situated in
regions I and II, for which the A matrix is given by

A =





cosβ − sgn(x) sin β 0
sgn(x) sin β cosβ 0

0 0 1



 (10)

Then [σ̂′]tnz is given by

[σ̂′]tnz = σ2D





sec β 0 0
0 0 0
0 0 cosβ



 (11)

Two things are apparent from the form of [σ̂′]tnz in
Eq.11. Firstly, there is a geometrical scaling factor in-
volved in the transformed conductivity tensor. In par-
ticular, for the untransformed case, the components [σ̂]tt

and [σ̂]zz should both be equal to σ2D. These geometri-
cal factors can be understood in terms of surface current
conservation, as pointed out in [21]. The surface current
density in the tangential direction prior to the transfor-
mation is Js,x = σ2DEx. After the transformation it
becomes J ′

s,t = σ2D secβ(E′
x cosβ − sgn(x)E′

y sinβ) =

σ2D sec β(Ex cosβ) = Js,x. For the z−direction, we
note that it is the surface current that needs to be
preserved across the region −a < x < a. So we

have, I ′s,z =
∫ a/ cosβ

−a/ cos β
J ′
s,zdx

′
t =

∫ a

−a
J ′
s,zdx

′/ cosβ =
∫ a

−a
(σ2D cosβ)E′

zdx
′/ cosβ =

∫ a

−a
σ2DEzdx = Is,z .

Secondly, it appears here that the given transforma-
tion requires us to somehow make the graphene con-
ductivity anisotropic, that is, σ̂′

tt and σ̂′
zz need to be

different. Although it might be possible to achieve such
anisotropic effects using strained graphene[22–25], yet
in the present case of TM modes, σ̂′

zz component does
not matter since the boundary condition for H ′

z only
involves the surface current in the |t〉 direction. Hence
this conductivity change can be easily implemented via
electrostatic[26] or chemical doping. As far as the
bulk parameters, namely ǫ′, µ′ are concerned, there have
been numerous demonstrations of natural and artificial
anisotropic materials in the THz range[27–30].

We have demonstrated the transformation rule for
surface conductivity under arbitrary coordinate trans-
formations. An additional factor related to the re-
normalization of the surface current needs to be included
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Fig. 2. A magnetic line current source is placed at (-500nm,
2nm). Normalized scattered field |H − Hinc|/max{|H −
Hinc|} is plotted here. A) Protrusion in graphene with no
transformation optics, B) protrusion in graphene with trans-
formation optics applied only to surrounding ǫ̂ and µ̂ and C)
protrusion in graphene with the full transformation optics
scheme applied to σ̂, ǫ̂ and µ̂. In this example, α = tan−1 3
and β = tan−1 2. In this example, the surrounding media in
the untransformed case are assumed to be vacuum.

to maintain the form invariance of the Maxwell’s equa-
tions. We then presented an example problem of reduc-
ing scattering from a triangular protrusion in graphene,
using the proposed method of surface conductivity trans-
formation. This kind of conductivity transformation
would be useful for transformation optics applications
involving two dimensional materials.
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