3,257 research outputs found

    Beating the channel capacity limit for linear photonic superdense coding

    Full text link
    Dense coding is arguably the protocol that launched the field of quantum communication. Today, however, more than a decade after its initial experimental realization, the channel capacity remains fundamentally limited as conceived for photons using linear elements. Bob can only send to Alice three of four potential messages owing to the impossibility of carrying out the deterministic discrimination of all four Bell states with linear optics, reducing the attainable channel capacity from 2 to log_2 3 \approx 1.585 bits. However, entanglement in an extra degree of freedom enables the complete and deterministic discrimination of all Bell states. Using pairs of photons simultaneously entangled in spin and orbital angular momentum, we demonstrate the quantum advantage of the ancillary entanglement. In particular, we describe a dense-coding experiment with the largest reported channel capacity and, to our knowledge, the first to break the conventional linear-optics threshold. Our encoding is suited for quantum communication without alignment and satellite communication.Comment: Letter: 6 pages, 4 figures. Supplementary Information: 4 pages, 1 figur

    Antikaon production in nucleon-nucleon reactions near threshold

    Get PDF
    The antikaon production cross section from nucleon-nucleon reactions near threshold is studied in a meson exchange model. We include both pion and kaon exchange, but neglect the interference between the amplitudes. In case of pion exchange the antikaon production cross section can be expressed in terms of the antikaon production cross section from a pion-nucleon interaction, which we take from the experimental data if available. Otherwise, a KK^*-resonance exchange model is introduced to relate the different reaction cross sections. In case of kaon exchange the antikaon production cross section is related to the elastic KNKN and KˉN\bar KN cross sections, which are again taken from experimental measurements. We find that the one-meson exchange model gives a satisfactory fit to the available data for the NNNNKKˉNN\to NNK\bar K cross section at high energies. We compare our predictions for the cross section near threshold with an earlier empirical parameterization and that from phase space models.Comment: 16 pages, LaTeX, 5 postscript figures included, submitted to Z. Phys.

    Sign-reversal of the in-plane resistivity anisotropy in hole-doped iron pnictides

    Full text link
    The in-plane anisotropy of the electrical resistivity across the coupled orthorhombic and magnetic transitions of the iron pnictides has been extensively studied in the parent and electron-doped compounds. All these studies universally show that the resistivity ρa\rho_{a} across the long orthorhombic axis aOa_{O} - along which the spins couple antiferromagnetically below the magnetic transition temperature - is smaller than the resistivity ρb\rho_{b} of the short orthorhombic axis bOb_{O}, i. e. ρa<ρb\rho_{a}<\rho_{b}. Here we report that in the hole-doped compounds Ba1x_{1-x}Kx_{x}Fe2_{2}As2_{2}, as the doping level increases, the resistivity anisotropy initially becomes vanishingly small, and eventually changes sign for sufficiently large doping, i. e. ρb<ρa\rho_{b}<\rho_{a}. This observation is in agreement with a recent theoretical prediction that considers the anisotropic scattering of electrons by spin-fluctuations in the orthorhombic/nematic state.Comment: This paper has been replaced by the new version offering new explanation of the experimental results first reported her

    Critical change in the Fermi surface of iron arsenic superconductors at the onset of superconductivity

    Full text link
    The phase diagram of a correlated material is the result of a complex interplay between several degrees of freedom, providing a map of the material's behavior. One can understand (and ultimately control) the material's ground state by associating features and regions of the phase diagram, with specific physical events or underlying quantum mechanical properties. The phase diagram of the newly discovered iron arsenic high temperature superconductors is particularly rich and interesting. In the AE(Fe1-xTx)2As2 class (AE being Ca, Sr, Ba, T being transition metals), the simultaneous structural/magnetic phase transition that occurs at elevated temperature in the undoped material, splits and is suppressed by carrier doping, the suppression being complete around optimal doping. A dome of superconductivity exists with apparent equal ease in the orthorhombic / antiferromagnetic (AFM) state as well as in the tetragonal state with no long range magnetic order. The question then is what determines the critical doping at which superconductivity emerges, if the AFM order is fully suppressed only at higher doping values. Here we report evidence from angle resolved photoemission spectroscopy (ARPES) that critical changes in the Fermi surface (FS) occur at the doping level that marks the onset of superconductivity. The presence of the AFM order leads to a reconstruction of the electronic structure, most significantly the appearance of the small hole pockets at the Fermi level. These hole pockets vanish, i. e. undergo a Lifshitz transition, at the onset of superconductivity. Superconductivity and magnetism are competing states in the iron arsenic superconductors. In the presence of the hole pockets superconductivity is fully suppressed, while in their absence the two states can coexist.Comment: Updated version accepted in Nature Physic

    Superconductivity at the Border of Electron Localization and Itinerancy

    Full text link
    The superconducting state of iron pnictides and chalcogenides exists at the border of antiferromagnetic order. Consequently, these materials could provide clues about the relationship between magnetism and unconventional superconductivity. One explanation, motivated by the so-called bad-metal behaviour of these materials, proposes that magnetism and superconductivity develop out of quasi-localized magnetic moments which are generated by strong electron-electron correlations. Another suggests that these phenomena are the result of weakly interacting electron states that lie on nested Fermi surfaces. Here we address the issue by comparing the newly discovered alkaline iron selenide superconductors, which exhibit no Fermi-surface nesting, to their iron pnictide counterparts. We show that the strong-coupling approach leads to similar pairing amplitudes in these materials, despite their different Fermi surfaces. We also find that the pairing amplitudes are largest at the boundary between electronic localization and itinerancy, suggesting that new superconductors might be found in materials with similar characteristics.Comment: Version of the published manuscript prior to final journal-editting. Main text (23 pages, 4 figures) + Supplementary Information (14 pages, 7 figures, 3 tables). Calculation on the single-layer FeSe is added. Enhancement of the pairing amplitude in the vicinity of the Mott transition is highlighted. Published version is at http://www.nature.com/ncomms/2013/131115/ncomms3783/full/ncomms3783.htm

    Magnetism and its microscopic origin in iron-based high-temperature superconductors

    Full text link
    High-temperature superconductivity in the iron-based materials emerges from, or sometimes coexists with, their metallic or insulating parent compound states. This is surprising since these undoped states display dramatically different antiferromagnetic (AF) spin arrangements and Neˊ\rm \acute{e}el temperatures. Although there is general consensus that magnetic interactions are important for superconductivity, much is still unknown concerning the microscopic origin of the magnetic states. In this review, progress in this area is summarized, focusing on recent experimental and theoretical results and discussing their microscopic implications. It is concluded that the parent compounds are in a state that is more complex than implied by a simple Fermi surface nesting scenario, and a dual description including both itinerant and localized degrees of freedom is needed to properly describe these fascinating materials.Comment: 14 pages, 4 figures, Review article, accepted for publication in Nature Physic

    Consistent model of magnetism in ferropnictides

    Get PDF
    The discovery of superconductivity in LaFeAsO introduced the ferropnictides as a major new class of superconducting compounds with critical temperatures second only to cuprates. The presence of magnetic iron makes ferropnictides radically different from cuprates. Antiferromagnetism of the parent compounds strongly suggests that superconductivity and magnetism are closely related. However, the character of magnetic interactions and spin fluctuations in ferropnictides, in spite of vigorous efforts, has until now resisted understanding within any conventional model of magnetism. Here we show that the most puzzling features can be naturally reconciled within a rather simple effective spin model with biquadratic interactions, which is consistent with electronic structure calculations. By going beyond the Heisenberg model, this description explains numerous experimentally observed properties, including the peculiarities of the spin wave spectrum, thin domain walls, crossover from first to second order phase transition under doping in some compounds, and offers new insight in the occurrence of the nematic phase above the antiferromagnetic phase transition.Comment: 5 pages, 3 figures, revtex

    Entry screening to delay local transmission of 2009 pandemic influenza A (H1N1)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>After the WHO issued the global alert for 2009 pandemic influenza A (H1N1), many national health agencies began to screen travelers on entry in airports, ports and border crossings to try to delay local transmission.</p> <p>Methods</p> <p>We reviewed entry screening policies adopted by different nations and ascertained dates of official report of the first laboratory-confirmed imported H1N1 case and the first laboratory-confirmed untraceable or 'local' H1N1 case.</p> <p>Results</p> <p>Implementation of entry screening policies was associated with on average additional 7-12 day delays in local transmission compared to nations that did not implement entry screening, with lower bounds of 95% confidence intervals consistent with no additional delays and upper bounds extending to 20-30 day additional delays.</p> <p>Conclusions</p> <p>Entry screening may lead to short-term delays in local transmission of a novel strain of influenza virus. The resources required for implementation should be balanced against the expected benefits of entry screening.</p

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Cascaded logic gates in nanophotonic plasmon networks

    Get PDF
    Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks. This finding provides a path for the development of novel nanophotonic on-chip processor architectures for future optical computing technologies
    corecore