78,060 research outputs found
Unified model of voltage/current mode control to predict saddle-node bifurcation
A unified model of voltage mode control (VMC) and current mode control (CMC)
is proposed to predict the saddle-node bifurcation (SNB). Exact SNB boundary
conditions are derived, and can be further simplified in various forms for
design purpose. Many approaches, including steady-state, sampled-data, average,
harmonic balance, and loop gain analyses are applied to predict SNB. Each
approach has its own merits and complement the other approaches.Comment: Submitted to International Journal of Circuit Theory and Applications
on December 23, 2010; Manuscript ID: CTA-10-025
Bifurcation Boundary Conditions for Switching DC-DC Converters Under Constant On-Time Control
Sampled-data analysis and harmonic balance analysis are applied to analyze
switching DC-DC converters under constant on-time control. Design-oriented
boundary conditions for the period-doubling bifurcation and the saddle-node
bifurcation are derived. The required ramp slope to avoid the bifurcations and
the assigned pole locations associated with the ramp are also derived. The
derived boundary conditions are more general and accurate than those recently
obtained. Those recently obtained boundary conditions become special cases
under the general modeling approach presented in this paper. Different analyses
give different perspectives on the system dynamics and complement each other.
Under the sampled-data analysis, the boundary conditions are expressed in terms
of signal slopes and the ramp slope. Under the harmonic balance analysis, the
boundary conditions are expressed in terms of signal harmonics. The derived
boundary conditions are useful for a designer to design a converter to avoid
the occurrence of the period-doubling bifurcation and the saddle-node
bifurcation.Comment: Submitted to International Journal of Circuit Theory and Applications
on August 10, 2011; Manuscript ID: CTA-11-016
The role of nonthermal electrons in the optical continuum of stellar flares
We explore the possibility that the continuum emission in stellar flares is
powered by nonthermal electrons accelerated during the flares. We compute the
continuum spectra from an atmospheric model for a dMe star, AD Leo, at its
quiescent state, when considering the nonthermal excitation and ionisation
effects by precipitating electron beams. The results show that if the electron
beam has an energy flux large enough, the U band brightening and, in
particular, the U-B colour are roughly comparable with observed values for a
typical large flare. Moreover, for electron beams with a moderate energy flux,
a decrease of the emission at the Paschen continuum appears. This can explain
at least partly the continuum dimming observed in some stellar flares. Adopting
an atmospheric model for the flaring state can further raise the continuum flux
but it yields a spectral colour incomparable with observations. This implies
that the nonthermal effects may play the chief role in powering the continuum
emission in some stellar flares.Comment: 6 pages, 4 figures, LaTeX (psfigs.sty), to appear in MNRA
Optimal control of large space structures via generalized inverse matrix
Independent Modal Space Control (IMSC) is a control scheme that decouples the space structure into n independent second-order subsystems according to n controlled modes and controls each mode independently. It is well-known that the IMSC eliminates control and observation spillover caused when the conventional coupled modal control scheme is employed. The independent control of each mode requires that the number of actuators be equal to the number of modelled modes, which is very high for a faithful modeling of large space structures. A control scheme is proposed that allows one to use a reduced number of actuators to control all modeled modes suboptimally. In particular, the method of generalized inverse matrices is employed to implement the actuators such that the eigenvalues of the closed-loop system are as closed as possible to those specified by the optimal IMSC. Computer simulation of the proposed control scheme on a simply supported beam is given
Toward An Economic Theory of Dysfunctional Identity
We advance a novel choice-theoretic model of "identity" based on the notions of categories and narratives. Identity is conceived as a matter of "reflexive perception" -- how people understand themselves. Choosing an identity is equivalent to making a generalization about one's past that highlights the most salient aspects of experience. When many individuals make a common choice in this regard, they embrace a collective identity which is dysfunctional if it is Pareto dominated by an alternative self-classificatory schema. Using a simple multi-stage risk sharing game, we explore conditions under which dysfunctional collective identities might be expected to emerge.Identity; Dysfunctional Collective Identity
Recommended from our members
Polyisoprene Captured Sulfur Nanocomposite Materials for High-Areal-Capacity Lithium Sulfur Battery
A polyisoprene-sulfur (PIPS) copolymer and nano sulfur composite material (90 wt % sulfur) is synthesized through inverse vulcanization of PIP polymer with micrometer-sized sulfur particles for high-areal-capacity lithium sulfur batteries. The polycrystalline structure and nanodomain nature of the copolymer are revealed through high-resolution transmission electron microscopy (HRTEM). PIP polymer is also used as binders for the electrode to further capture the dissovlved polysulfides. A high areal capacity of ca. 7.0 mAh/cm2 and stable cycling are achieved based on the PIPS nanosulfur composite with a PIP binder, crucial to commercialization of lithium sulfur batteries. The chemical confinement both at material and electrode level alleviates the diffusion of polysulfides and the shuttle effect. The sulfur electrodes, both fresh and cycled, are analyzed through scanning electron microscopy (SEM). This approach enables scalable material production and high sulfur utilization at the cell level
Building on Cram's legacy: stimulated gating in hemicarcerands.
CONSPECTUS: Donald Cram's pioneering Nobel Prize-winning work on host-guest molecules led eventually to his creation of the field of container molecules. Cram defined two types of container molecules: carcerands and hemicarcerands. Host-guest complexes of carcerands, called carceplexes, are formed during their synthesis; once a carceplex is formed, the trapped guest cannot exit without breaking covalent bonds. Cram defined a quantity called constrictive binding, arising from the mechanical force that prevents guest escape. The constrictive binding in carceplexes is high. In contrast, hemicarcerands have low constrictive binding and are able to release the incarcerated guests at elevated temperatures without breaking covalent bonds. We have designed molecules that can switch from carcerand to hemicarcerand through a change in structure that we call gating. The original discovery of gating in container molecules involved our computational studies of a Cram hemicarceplex that was observed to release a guest upon heating. We found that the side portals of this hemicarceplex have multiple thermally accessible conformations. An eight-membered ring that is part of a portal changes from a "chair" to a "boat" structure, leading to the enlargement of the side portal and the release of the guest. This type of gating is analogous to phenomena often observed with peptide loops in enzymes. We refer to this phenomenon as thermally controlled gating. We have also designed and synthesized redox and photochemically controlled gated hemicarceplexes. Gates are built onto host molecules so that the opening or closing of such gates is stimulated by reducing or oxidizing conditions, or by ultraviolet irradiation. In both cases, the appropriate stimuli can produce a carceplex (closed gates) or hemicarceplex (open gates). A hemicarceplex with closed gates behaves like a carceplex, due to its very high constrictive binding energy. When the gates are opened, constrictive binding is dramatically lowered, and guest entrance and exit become facile. This stimulated switching between open and closed states controls access of the guest to the binding site. The experimental and computational investigations of gated hemicarcerands and several potential applications of gated hemicarceplexes are described in this Account
- …
