20 research outputs found

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Understanding the Essential Metabolic Nodes in the Synthesis of 4-Acetylantroquinol B (4-AAQB) by <i>Antrodia cinnamomea</i> Using Transcriptomic Analysis

    No full text
    4-Acetylantroquinol B (4-AAQB) is a ubiquinone that has been shown to have multiple anticancer activities and is only found in the rare medicinal fungus A. cinnamomea in Taiwan. The large-scale production and application of 4-AAQB is thus limited due to the high host specificity, long production cycle, and low 4-AAQB content of A. cinnamomea. Additionally, the lack of molecular genetic studies on A. cinnamomea has hindered the study of the synthetic pathway of 4-AAQB. In this work, transcriptomic analysis was conducted to understand the essential metabolic nodes in the synthesis of 4-AAQB by A. cinnamomea based on the differences using glucose and fructose as carbon sources, respectively. The results showed that the glyoxylate and TCA cycle, terpenoid synthesis pathway, and the quinone ring modification pathway were clarified as the most significant factors associated with 4-AAQB synthesis. The enzymes ACS, ACU7, ACUE, GPS, PPT, P450, GEDA, YAT1, CAT2, and METXA in these pathways were the essential metabolic nodes in the synthesis of 4-AAQB. When fructose was used as the substrate, the expressions of these enzymes were upregulated, and the synthesis of some important intermediate metabolites was enhanced, thus promoting the accumulation of 4-AAQB. Our work understood the mechanism of fructose promoting the synthesis of 4-AAQB and identified the essential metabolic nodes which could provide the theoretical basis for the development of fermentation strategies to produce 4-AAQB by A. cinnamomea

    An empirical approach to develop near-field limit for radiated-emission compliance check

    No full text
    Based on measurements from a near-field scanner and far-field measurements obtained in a semi-anechoic chamber, a statistical relationship is established between a magnetic field in the near field and an electric field in the far field. The relationship makes it possible to transform a radiated-emission regulatory limit from the far-field to the near-field zone. The transformed near-field limit can allow efficient prediction of radiated-emission compliance for high-speed printed circuit boards. The presented results demonstrate the feasibility of the proposed method for a quick radiated-emission precompliance check without heavy equipment investment.Accepted versio

    Development of near-field emission limit from radiated-emission limit based on statistical approach

    No full text
    This paper discusses a novel approach to transforming a radiated-emission limit (e.g., CISPR 22 and FCC) from the far-field to the near-field region. The proposed approach combines data from a near-field scanner and a gigahertz transverse electromagnetic cell with statistics to establish a simple relationship between a near-field magnetic field and a far-field electric field. It is shown that the proposed approach has the potential to be a simple, quick, and fairly inexpensive tool for electromagnetic compatibility pre-compliance purposes
    corecore