2,382 research outputs found
Excited Heavy Quarkonium Production at the LHC through -Boson Decays
Sizable amount of heavy-quarkonium events can be produced through -boson
decays at the LHC. Such channels will provide a suitable platform to study the
heavy-quarkonium properties. The "improved trace technology", which disposes
the amplitude at the amplitude-level, is helpful for deriving
compact analytical results for complex processes. As an important new
application, in addition to the production of the lower-level Fock states
and , we make a further study on the
production of higher-excited -quarkonium Fock states
, and . Here
stands for the -charmonium,
-quarkonium and -bottomonium respectively. We show
that sizable amount of events for those higher-excited states can also be
produced at the LHC. Therefore, we need to take them into consideration for a
sound estimation.Comment: 7 pages, 9 figures and 6 tables. Typo errors are corrected, more
discussions and two new figures have been adde
A description of the transverse momentum distributions of charged particles produced in heavy ion collisions at RHIC and LHC energies
By assuming the existing of memory effects and long-range interactions in the
hot and dense matter produced in high energy heavy ion collisions, the
nonextensive statistics together with the relativistic hydrodynamics including
phase transition is used to discuss the transverse momentum distributions of
charged particles produced in heavy ion collisions. It is shown that the
combined contributions from nonextensive statistics and hydrodynamics can give
a good description to the experimental data in Au+Au collisions at sqrt(s_NN )=
200 GeV and in Pb+Pb collisions at sqrt(s_NN) )= 2.76 TeV for pi^(+ -) , K^(+
-) in the whole measured transverse momentum region, and for p(p-bar) in the
region of p_T<= 2.0 GeV/c. This is different from our previous work, where, by
using the conventional statistics plus hydrodynamics, the describable region is
only limited in p_T<= 1.1 GeV/c.Comment: 14 pages, 3 figures, 2 table
A method based on multiscale base-scale entropy and random forests for roller bearings faults diagnosis
A method based on multiscale base-scale entropy (MBSE) and random forests (RF) for roller bearings faults diagnosis is presented in this study. Firstly, the roller bearings vibration signals were decomposed into base-scale entropy (BSE), sample entropy (SE) and permutation entropy (PE) values by using MBSE, multiscale sample entropy (MSE) and multiscale permutation entropy (MPE) under different scales. Then the computation time of the MBSE/MSE/MPE methods were compared. Secondly, the entropy values of BSE, SE, and PE under different scales were regarded as the input of RF and SVM optimized by particle swarm ion (PSO) and genetic algorithm (GA) algorithms for fulfilling the fault identification, and the classification accuracy was utilized to verify the effect of the MBSE/MSE/MPE methods by using RF/PSO/GA-SVM models. Finally, the experiment result shows that the computational efficiency and classification accuracy of MBSE method are superior to MSE and MPE with RF and SVM
Recommended from our members
Endocytic recycling and vesicular transport systems mediate transcytosis of Leptospira interrogans across cell monolayer.
Many bacterial pathogens can cause septicemia and spread from the bloodstream into internal organs. During leptospirosis, individuals are infected by contact with Leptospira-containing animal urine-contaminated water. The spirochetes invade internal organs after septicemia to cause disease aggravation, but the mechanism of leptospiral excretion and spreading remains unknown. Here, we demonstrated that Leptospira interrogans entered human/mouse endothelial and epithelial cells and fibroblasts by caveolae/integrin-β1-PI3K/FAK-mediated microfilament-dependent endocytosis to form Leptospira (Lep)-vesicles that did not fuse with lysosomes. Lep-vesicles recruited Rab5/Rab11 and Sec/Exo-SNARE proteins in endocytic recycling and vesicular transport systems for intracellular transport and release by SNARE-complex/FAK-mediated microfilament/microtubule-dependent exocytosis. Both intracellular leptospires and infected cells maintained their viability. Leptospiral propagation was only observed in mouse fibroblasts. Our study revealed that L. interrogans utilizes endocytic recycling and vesicular transport systems for transcytosis across endothelial or epithelial barrier in blood vessels or renal tubules, which contributes to spreading in vivo and transmission of leptospirosis
Undrained shear strength of soft clay reinforce with single 16mm diameter encapsulated bottom ash column
Soft clay soil can be categorized as problematic soil. It consists of low shear strength, low permeability and high compressibility characteristics affect the stability and settlement of the structures constructed on this type of soil. A careful design analysis could be taken for any structure built on it. However, those characteristics could be improved through many methods and the easiest method that is being used in the construction field was stone column. On the other hand, coal is one of the world’s most important sources of energy. Disposal of bottom ash become environmental issues if it is not effectively reused or recycled for other application. This study is to present suitability in term of shear strength by using bottom ash to replace sand or granular material in column for ground improvement technique using laboratory scale model. Since sand is one of non-renewable material so by using by-product or waste material such bottom ash we can reduce the cost of construction as well as keep the non-renewable natural material in balance. Several experimental procedures are carried out to know the physical and mechanical properties of bottom ash and kaolin clay sample. Kaolin is being used as soil sample and bottom ash as the reinforced columns. The shear strength of the encapsulated bottom ash column measured by Unconfined Compression Test. A total 4 batches of kaolin sample had been tested and each batch consist of 5 specimens represent sample without bottom ash, partially penetration and fully penetration for singular bottom ash column. The specimen used were 50mm in diameter and 100mm in height. The diameter of bottom ash is 16mm and the height of the column are 60mm, 80mm and 100mm. The encapsulated bottom ash was installed at the centre of the specimen. The encapsulated bottom ash column with 10.24% area replacement ratio are 58.21%, 58.66% and 42.58% at sample penetration ratio, Hc/Hs of 0.6, 0.8 and 1.0 respectively. It can be concluded that the shear strength of soft clay could be improved by installation of encapsulated bottom ash column. However the value of shear strength of soft clay inserted with partially penetration column increased more significant compared to the fully penetration column
A user-centred collective system design approach for Smart Product-Service Systems:A case study on fitness product design
Emerging technologies have significantly contributed to the evolution of traditional product-service systems (PSS) into smart PSS. This transformation demands a fresh perspective and a more inventive design approach. In response, this study proposes a new User-Centred Collective System Design (CSD) framework and process for Smart PSS design, aiming to enhance stakeholder engagement during the entire design process, thus promoting highly effective and creative design solutions. A case study, titled ‘Next-G Smart Fitness PSS Design’, was carried out to test and implement this approach, contrasting the results of the CSD method with a designer-centred method. The outcomes showed a marked improvement in product novelty and user desirability of the design outcomes when using the proposed design framework. The proposed CSD framework could offer beneficial insights and user-centric viewpoints for practitioners dealing with complex challenges linked to smart PSS design
- …