4,390 research outputs found

    Neural Graph Matching for Modification Similarity Applied to Electronic Document Comparison

    Full text link
    In this paper, we present a novel neural graph matching approach applied to document comparison. Document comparison is a common task in the legal and financial industries. In some cases, the most important differences may be the addition or omission of words, sentences, clauses, or paragraphs. However, it is a challenging task without recording or tracing whole edited process. Under many temporal uncertainties, we explore the potentiality of our approach to proximate the accurate comparison to make sure which element blocks have a relation of edition with others. In beginning, we apply a document layout analysis that combining traditional and modern technics to segment layout in blocks of various types appropriately. Then we transform this issue to a problem of layout graph matching with textual awareness. About graph matching, it is a long-studied problem with a broad range of applications. However, different from previous works focusing on visual images or structural layout, we also bring textual features into our model for adapting this domain. Specifically, based on the electronic document, we introduce an encoder to deal with the visual presentation decoding from PDF. Additionally, because the modifications can cause the inconsistency of document layout analysis between modified documents and the blocks can be merged and split, Sinkhorn divergence is adopted in our graph neural approach, which tries to overcome both these issues with many-to-many block matching. We demonstrate this on two categories of layouts, as follows., legal agreement and scientific articles, collected from our real-case datasets

    Interleaving Technique for Block Coding of Black-and-white Facsimile Data�

    Get PDF
    Computer Scienc

    Training Energy-Based Normalizing Flow with Score-Matching Objectives

    Full text link
    In this paper, we establish a connection between the parameterization of flow-based and energy-based generative models, and present a new flow-based modeling approach called energy-based normalizing flow (EBFlow). We demonstrate that by optimizing EBFlow with score-matching objectives, the computation of Jacobian determinants for linear transformations can be entirely bypassed. This feature enables the use of arbitrary linear layers in the construction of flow-based models without increasing the computational time complexity of each training iteration from O(D2L)\mathcal{O}(D^2L) to O(D3L)\mathcal{O}(D^3L) for an LL-layered model that accepts DD-dimensional inputs. This makes the training of EBFlow more efficient than the commonly-adopted maximum likelihood training method. In addition to the reduction in runtime, we enhance the training stability and empirical performance of EBFlow through a number of techniques developed based on our analysis on the score-matching methods. The experimental results demonstrate that our approach achieves a significant speedup compared to maximum likelihood estimation, while outperforming prior efficient training techniques with a noticeable margin in terms of negative log-likelihood (NLL)

    Localized Langerhans cell histiocytosis masquerading as Brodie s abscess in a 2-year-old child: a case report

    Get PDF
    Langerhans cell histiocytosis (LCH), formerly known as histiocytosis X, refers to a spectrum of diseases characterized by idiopathic proliferation of histiocytes that produce either focal (localized LCH) or systemic manifestations (Hand–Schüller–Christian disease and Letterer–Siwe disease). Localized LCH accounts for approximately 60–70 % of all LCH cases. Osseous involvement is the most common manifestation and typically involves the flat bones, along with lesions of the skull, pelvis, and ribs. Localized LCH in bone shows a wide spectrum of clinical manifestations and radiologic features that may mimic those of infections as well as benign and malignant tumors. The diagnostic imaging findings of localized LCH are also diverse and challenging. The penumbra sign is a common and characteristic magnetic resonance imaging (MRI) feature of Brodie’s abscess, but is rarely seen in localized LCH. In this report, we describe a case of localized LCH misdiagnosed as Brodie’s abscess in a 2-year-old child based on clinical symptoms, laboratory findings, and pre-diagnostic MRI findings (penumbra sign). Therefore, the penumbra sign is not sufficient to clearly establish the diagnosis of Brodie’s abscess, and the differential diagnosis of localized LCH should be considered when a child with an osteolytic lesion presents with a penumbra sign

    Increased ATP generation in the host cell is required for efficient vaccinia virus production

    Get PDF
    To search for cellular genes up-regulated by vaccinia virus (VV) infection, differential display-reverse transcription-polymerase chain reaction (ddRT-PCR) assays were used to examine the expression of mRNAs from mock-infected and VV-infected HeLa cells. Two mitochondrial genes for proteins that are part of the electron transport chain that generates ATP, ND4 and CO II, were up-regulated after VV infection. Up-regulation of ND4 level by VV infection was confirmed by Western blotting analysis. Up-regulation of ND4 was reduced by the MAPK inhibitor, apigenin, which has been demonstrated elsewhere to inhibit VV replication. The induction of ND4 expression occurred after viral DNA replication since ara C, an inhibitor of poxviral DNA replication, could block this induction. ATP production was increased in the host cells after VV infection. Moreover, 4.5 μM oligomycin, an inhibitor of ATP production, reduced the ATP level 13 hr after virus infection to that of mock-infected cells and inhibited viral protein expression and virus production, suggesting that increased ATP production is required for efficient VV production. Our results further suggest that induction of ND4 expression is through a Bcl-2 independent pathway

    MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Get PDF
    [[abstract]]Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.[[notice]]補正完畢[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]電子

    Nanoparticles prepared from the water extract of Gusuibu (Drynaria fortunei J. Sm.) protects osteoblasts against insults and promotes cell maturation

    Get PDF
    Our previous study showed that Gusuibu (Drynaria fortunei J. Sm.) can stimulate osteoblast maturation. This study was further designed to evaluate the effects of nanoparticles prepared from the water extract of Gusuibu (WEG) on osteoblast survival and maturation. Primary osteoblasts were exposed to 1, 10, 100, and 1000 μg/mL nanoparticles of WEG (nWEG) for 24, 48, and 72 hours did not affect morphologies, viability, or apoptosis of osteoblasts. In comparison, treatment of osteoblasts with 1000 μg/mL WEG for 72 hours decreased cell viability and induced DNA fragmentation and cell apoptosis. nWEG had better antioxidant bioactivity in protecting osteoblasts from oxidative and nitrosative stress-induced apoptosis than WEG. In addition, nWEG stimulated greater osteoblast maturation than did WEG. Therefore, this study shows that WEG nanoparticles are safer to primary osteoblasts than are normal-sized products, and may promote better bone healing by protecting osteoblasts from apoptotic insults, and by promoting osteogenic maturation
    corecore