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Various biological effects are associatedwith radiation exposure. Irradiated cellsmay elevate the risk for genetic instability,mutation,
and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal
tissues. Radiation-induced bystander effect (RIBE) is the focus of rigorous research as it may promote the development of cancer
even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought
that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs) have been found to correlate radiation-induced
damages andmay be potential biomarkers for the various biological effects caused by different levels of radiation exposure.However,
the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA
under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA
knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition,
we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the
molecular underpinnings of radiation injury.

1. Introduction

Radiation exists everywhere in our daily life. It is used in
medical treatments and also utilized to generate electricity.
Risk assessment of acute radiation injury caused by high-
dose radiation exposure has been the focus of extensive
research, but the mechanisms underlying the effect of low-
dose radiation, whether short- or long-term, remain elusive
[1]. Response to radiation-induced damages varies due to
many confounding factors such as the immune status, age,
and genetics [2]. However, in some cases, signs of radiation
damage may not be immediately apparent, or not present at
all.

Radiation studies primarily concentrate on examining the
biological effects of radiation on cell death, chromosomal

impairments, mutagenesis, carcinogenesis, and structural
alterations of the cell, as well as direct or indirect damage
to the DNA double helix via the production of free radical
[3]. These damaging consequences of radiation exposure
may require several months to years or even generations to
develop [4, 5].

In addition to cellular and molecular damages caused by
radiation exposure, the radiation-induced bystander effect
(RIBE) is also an important topic of rigorous research. The
RIBE theory describes the condition in which nonirradi-
ated cells become irradiated by receiving radiation from
neighboring irradiated cells. In other words, cells that are
not directly hit by an alpha particle but are in the vicinity
of one that has been hit also contribute to the genotoxic
response of the cell population [6]. RIBE is also suggested
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to play a role in the biological consequences of exposure
to low doses of radiation [7]. Immune cells such as T-
lymphocytes and dendritic cells have been particularly impli-
cated in this process [8], though there is currently insufficient
evidence to demonstrate that the bystander effect is able
to promote carcinogenesis in human at low doses [1]. The
mechanisms underlying the bystander effect are complex and
a comprehensive understanding of this process has yet to
be established [9]. It is known that irradiated cells affect
nonirradiated cells through intracellular communications.
Molecular signals may be transmitted from the irradiated
cells to the nonirradiated ones via gap junctions between cells
or through ligand-receptor interaction when the signals are
secreted as soluble factors into the culturemedium [10].These
transmittable factors are diverse. At present, it is not definitely
established as to how many types of molecular signals are
involved and to what extent they modulate the transmission
of irradiation effect. Nonetheless, RIBE has clear negative
implications on health. In the context of RIBE, even at low
levels of radiation exposure [11], irradiated cells may still
elevate the risk for genetic instability, mutation, and cancer,
in addition to being able to extend the postradiation side
effects in normal tissues [12]. The bystander effects seem to
be tissue-specific as demonstrated by in vivo and in vitro
studies [13, 14], and radiation-induced genomic instability
(RIGI) as a result of RIBE may play an important role in
carcinogenesis [15], though the mechanisms are less clear
under fractionated irradiation. RIGI is one of the postirra-
diation outcomes that appear in nonirradiated progeny cells
much later after the initial exposure [15]. Alterations in the
DNA sequence could not explain these biological effects of
radiation and it is thought that epigenetics, including DNA
methylation, histone modifications, chromatin remodeling,
and noncoding RNA modulation, may be involved [16].

Indeed, some microRNAs (or miRNAs) were found to be
correlated with the biological effects caused by radiation in
recent findings. Studies in humans [17, 18] and mice [19, 20]
have revealed an association between miRNA regulation and
radiation exposure that is dependent on the dosages and
time after irradiation. However, the regulatory role miRNA
plays in this aspect is still unclear. In the present study, we
profiled the expression changes inmiRNAunder fractionated
radiation exposure in human peripheral blood mononuclear
cells. By utilizing publicly available microRNA knowledge
bases and cross validating with our previous gene expres-
sion profiling under the same radiation set-up, our analysis
identified specific miRNA-gene interactions characteristic of
various doses of radiation treatment, providing new insights
for the molecular underpinnings of radiation injury.

2. Materials and Methods

2.1. Sample Preparation. Whole blood samples (30mL) were
drawn from each of the five participants and collected into
vacutainers containing sodium heparin. Samples were irradi-
ated using 60Co at a dose rate of 0.546Gy/min (The Institute
of Nuclear Energy Research (INER), Taoyuan, Taiwan). The
radiation doses used in these experiments were chosen to

cover a range of 0.5 Gy, 1 Gy, 2.5 Gy, and 5Gy. The control
samples were not exposed to any radiation. Samples were
harvested after 24 hours of treatment with radiation [21, 22].
Informed consents were obtained from all participants. All
procedures were approved by the Institutional Review Board
at Tzu Chi General Hospital, Hualien, Taiwan.

2.2. RNAPreparation. Total RNAwas extracted fromperiph-
eral blood mononuclear cells using Trizol (Invitrogen, Carls-
bad, CA, USA) according to the manufacturer’s instruction.
RNAquantity and purity were assessed usingNanoDropND-
1000 (Thermo Fisher Scientific, Waltham, Massachusetts,
USA). A260/A280 ≥ 1.6 and A260/A230 ≥ 1 indicate accept-
able RNA purity, while acceptable RIN value ≥ 5 using
Agilent RNA 6000 Nanoassay (Agilent Technologies, Inc.,
Santa Clara, California, USA). gDNA contamination was
evaluated by gel electrophoresis.

2.3. miRNA Expression Profiling. Total RNA samples (2.5 𝜇g)
were subjected to microarray analysis of microRNA expres-
sion using theHumanmiRNAOneArray v5 (PhalanxBiotech
Group, Hsinchu, Taiwan). Labeling efficiency was calculated
by the concentration of CyDye and RNA was measured by
NanoDrop ND-1000. Normalization and statistical analysis
were conducted with R/Bioconductor (Bioconductor, Fred
Hutchinson Cancer Research Center). Expression profiles of
changes induced by the various radiation doses (0.5 Gy, 1 Gy,
2.5 Gy, and 5Gy)were each normalized to the control without
any radiation exposure. Significantly differentially expressed
miRNAs (normalized intensity ≥ 300, absolute Log

2
ratio ≥

1, absolute fold change ≥ 1, and FDR < 0.05) were categorized
into up- and downregulated genes for each radiation dose.

2.4. miRNA Target Prediction. We adopted an integrative
approach, utilizing publicly available databases and our own
gene expression data, to identify the target genes for the
differentially expressed miRNAs (Figure 1). First, a list of
validated targets for a specific differentially expressedmiRNA
was generated by performing a search through the validated
data in miRWalk database [23]. For the predicted data, the
accepted target predictions were those identified by at least
four out of the five well-established databases, including
miRWalk [23], miRANDA [24], miRDB [25], RNA22 [26],
and TargetScan [27]. Next, we utilized a list of differentially
expressed genes identified from our previous gene expression
study of changes in human peripheral blood mononuclear
cells induced by varying doses of 60Co radiation (absolute
Log
2
ratio ≥ 1, absolute fold change ≥ 1, and FDR < 0.05).

For each 60Co radiation dosage, we grouped the downreg-
ulated genes with upregulated microRNAs and vice versa.
On another web-based system, miRTar [28], we input these
genes to look for possible miRNA-gene interactions based
on the target genes’ 3󸀠UTR (untranslated regions), 5󸀠UTR,
and coding regions. This systematic approach filtered out
previously identified candidate genes that did not match the
predicted or validated miRNA-gene interaction list.

2.5. miRNA-Gene Interaction Analysis. By employing the
gene enrichment function in miRTar [28], the putative or
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Figure 1: System flow of our analysis.

experimentally verified miRNA-gene interactions identified
through the integrative database searches were mapped to
KEGG (Kyoto Encyclopedia of Genes and Genomes) [29]
to reveal the biological importance of these molecular rela-
tionships. Only those enriched pathways with a 𝑃 value
< 0.05 were considered significant. After applying such a
threshold, only miRNAs differentially expressed under 1 Gy
of radiation exposure were retained. To visualize the relation-
ships between the candidate miRNAs and their differentially
expressed target genes, an interaction network integrating the
expression values of each miRNA and gene was constructed
usingCytoscape v.3.1.0 (National Institute of GeneralMedical
Sciences and National Resource for Network Biology, USA)
[30, 31].

3. Results

FewmiRNAs showed significant changes in expression under
0.5 and 2.5Gy of 60Co radiation exposure (Table 1). Whereas
only four miRNAs exhibited enhanced expression under
5Gy of radiation, a dosage of 1 Gy appeared to induce
expression changes in the greatest number of microRNAs,
with seven being upregulated and two downregulated. The
pattern is consistent with our findings [32] on the gene
expression changes in human peripheral blood mononuclear
cells exposed to the same varying doses of 60Co radiation.

To elucidate the potential regulatory relationship between
the differentially expressed miRNAs and our previously
identified gene candidates [32], we performed a systematic
search utilizing a variety of database tools. Table 2 presents
the potential relationships between the candidate miRNAs
and their corresponding target genes as validated by our list
of differentially expressed genes. It appears that most of the
molecular changes occurred at 1 Gy of radiation dosage.

In order to identify the biological importance of the
molecular changes occurring under 1 Gy of radiation

Table 1: Number of significantly differentially expressed miRNAs
in human peripheral blood mononuclear cells exposed to varying
doses of 60Co radiation (absolute fold change ≥ 1; FDR < 0.05).

Comparison
(Gy)

Upregulated
miRNAs

Downregulated
miRNAs

0 versus 0.5 hsa-miR-185-5p 0

0 versus 1

hsa-miR-107 hsa-miR-3180
hsa-miR-126-3p hsa-miR-4730
hsa-miR-144-3p
hsa-miR-17-5p
hsa-miR-185-5p
hsa-miR-20b-5p
hsa-miR-5194

0 versus 2.5 0 0

0 versus 5 0

hsa-miR-142-3p
hsa-miR-142-5p
hsa-miR-223-3p
hsa-miR-451a

exposure, the differentially expressed miRNAs and their
corresponding target genes were mapped to their respective
KEGG pathways. The overrepresented pathways seem to be
related to homeostasis, metabolism, neuronal survival, and
cellular control (Table 3). Three microRNAs, hsa-miR-20b-
5p, hsa-miR-17-5p, and hsa-miR-185-5p, appear to regulate
the highest number of radiation sensitive genes compared to
the other differentially expressed microRNAs (Table 2).

Moreover, these miRNAs’ target genes are enriched in
cancer and cell cycle-related pathways (Table 3). Conse-
quently, hsa-miR-20b-5p, hsa-miR-17-5p, and hsa-miR-185-
5p may be involved in modulating genes underlying cell
cycle control and the development of thyroid cancer and
prostate cancer. The pathway-specific association between
these miRNAs and their corresponding target genes is shown
in Figures 2–4.

Our data suggest that the miRNA-gene interactions
associated with 1 Gy of radiation dosage treatment may be
the key molecular signatures underlying the damages caused
by radiation exposure. In order to visualize the relationships
between these miRNA and gene candidates, we constructed
an interaction network that illustrates the complex regulatory
relationships among these genes and miRNAs. Note that
hsa-miR-20b-5p and hsa-miR-17-5p share many target genes,
suggesting that they modulate gene expression through a
cooperative manner (Figure 5).

4. Discussion

In the current study, we profiled miRNA expression changes
under varying doses of radiation exposure through an array-
based approach. Our results support the emerging evidence
that tissue and cellular injuries may alter miRNA expression
[33]. In addition, by utilizing publicly available bioinformatics
resources and comparing with our previous gene expression
profiling data, we have mapped out a potential miRNA-gene
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Table 2: Putative and validated interactions between the differentially expressed microRNAs and gene candidates specific to each dose of
60Co radiation.

Dose (Gy) miRNA Fold change Target gene Fold change

0.5 hsa-miR-185-5p 1.18 TNFSF10a −1.21
GLULc −1.49

1

hsa-miR-107 1.09 14 genesc Decreased
hsa-miR-144 1.60 SELL −1.04

COTL −1.06
CEP63 −1.14

hsa-miR-17-5p 1.09 MCL1a −1.26
FGL2b −1.33

30 other genesc Decreased
hsa-miR-185-5p 1.01 32 genesc Decreased
hsa-miR-20b-5p 1.01 27 genesc Decreased

5

hsa-miR-142-3p −1.02 MAP4K3b 1.32
DIRC2b 1.01
TIPARPb 1.05
PDE4Bc 1.54

hsa-miR-142-5p −1.09 AHRa 1.31
SLC36A4b 1.11

hsa-miR-223-3p −1.27 DUSP10b,c 1.07
EFNA1b 1.01

hsa-miR-451a −1.28 SLC7A11c 1.14
aExperimentally validated miRNA-gene interaction as identified by miRWalk.
bmiRNA-gene interaction predicted by at least four out of the five selected miRNA target prediction databases.
cmiRNA-gene interaction predicted by miRTar; the complete gene list is provided in Supplementary Material 1 (see Supplementary Material available online
at http://dx.doi.org/10.1155/2014/456323).

Table 3: Enriched KEGG pathways associated with specific miRNA-gene interactions under 1 Gy of 60Co radiation exposure.

microRNA Pathway Genes 𝑃 value

hsa-miR-185-5p Cell cycle YWHAG, YWHAB, and PCNA 0.0019
Prostate cancer TCF7, HSP90AA1 0.0380

hsa-miR-107 Neurotrophin signaling pathway YWHAB, CRKL 0.0200
Renin-angiotensin system MME 0.0351

hsa-miR-20b-5p Thyroid cancer TCF7 0.0490

hsa-miR-17-5p Pentose phosphate pathway TALDO1 0.0490
Thyroid cancer TCF7 0.0483

interactome map that may underlie the molecular changes
induced by radiation treatment.

Most of the upregulated miRNAs were found under
low doses of 60Co radiation exposure (≤1 Gy), while only
significantly downregulated miRNAs were found in the 5Gy
radiation dosage range. This indicates that response to radi-
ation exposure at the miRNA level is dose dependent. From
publicly availablemiRNAknowledge bases, we retrieved a list
of genes that have been validated to interact with these miR-
NAs, namely, hsa-miR-185-5p, hsa-miR-107, hsa-miR-20b-5p,
and hsa-miR-17-5p for the low radiation doses and hsa-miR-
142, hsa-miR-223-3p, and hsa-miR-451a for the 5Gy radiation
exposure. These genes were compared to those identified
from our previous gene expression profiling experiment.
Matched genes were considered the most promising targets.

Our analysis showed that two miRNAs, hsa-miR-142-3p
and hsa-miR-223-3p, with decreased expression after expo-
sure to 5Gy of 60Co radiation may be potential modulators
ofMAP4K3 (mitogen-activated protein kinase kinase kinase
kinase 3) and DUSP10 (dual specificity phosphatase 10),
respectively. In particular, MAP4K3 is an apoptosis inducer
that is activated upon UV radiation [34]. Mutation in the
MAP4K3 gene sequence was predicted to modulate cancer
progression [35], and this hypothesis was supported by
abnormal levels of MAP4K3 expression in pancreatic cancer
tissues and enhanced cellular proliferation by RNAi-induced
suppression of MAP4K3 [36]. On the other hand, increased
transcript abundance of DUSP10 was shown to influence
gut homeostasis by suppressing proliferation and apoptosis,
while promoting differentiation [37]. Both DUSP10 and
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Figure 2: Regulation of YWHAG, YWHAB, and PCNA by hsa-miR-185-5p in a cell cycle pathway.

MAP4K3 play important roles in the MAPK signaling path-
way [38]. Our results suggest that the increase in MAP4K3
andDUSP10 transcript abundance as a result of 5Gy radiation
exposure may be modulated by their interactions with hsa-
miR-142-3p and hsa-miR-223-3p, respectively.These putative
relationships might even be one of the underlying regulatory
mechanisms of radiation-induced changes in cell cycle sig-
naling.

As the upregulated miRNAs were primarily found in the
low-dose radiation range (0.5 Gy and 1Gy), we performed
a series of gene set enrichment analysis on their candidate
target genes and mapped these miRNA-gene interactions to
pathways related to the cell cycle, neurotrophin signaling,
renin-angiotensin system, and pentose phosphate pathways,
as well as prostate and thyroid cancers. This is in line with
the observation that radiation induced apoptosis through
the neurotrophin signaling pathway [39]. Delayed wound
healing following low-dose radiation exposure was also par-
tially attributed to reduced activity of the renin-angiotensin
system [40]. Moreover, evidence has shown that increased
activity of the pentose phosphate cycle can protect cells from
programmed cell death induced by low doses of ionizing

radiation [41]. According to our results, it is possible that
specific miRNAs are upregulated to modulate genes involved
in these pathways in response to low-dose radiation.

The miRNA hsa-miR-185-5p exhibited increased expres-
sion when exposed to 0.5Gy and 1Gy dosage of radia-
tion and was predicted to interact with YWHAG (tyro-
sine 3-monooxygenase/tryptophan 5-monooxygenase acti-
vation protein, gamma polypeptide), YWHAB (tyrosine
3-monooxygenase/tryptophan 5-monooxygenase activation
protein, beta polypeptide), and PCNA (proliferating cell
nuclear antigen), which appeared to be downregulated under
the same condition. Pathway analysis (see Figure 2) suggested
that these three genes are involved in cell cycle pathways.
In particular, YWHAB is known to regulate the cyclin B
and cyclin-dependent kinase 1 complex, while PCNA is an
inhibitor of the cyclin D and cyclin-dependent kinase 4 or
6 complex [42, 43]. According to a porcine model study,
YWHAG and YWHAB mediate insulin-like growth factor
signaling and the G2/M DNA damage checkpoint in cell
cycle control [44].Maternal high protein diet has been shown
to associate with increasing expression levels of YWHAG
and YWHAB [44]. Our results support that these three
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Figure 3: Regulation of TCF7 and HSP90AA1 by hsa-miR-185-5p in a prostate cancer pathway.

genes regulate the cell cycle pathway and are particularly
sensitive to changes in the external environment, especially
radiation exposure, and that hsa-miR-185-5pmay be involved
in mediating this response. In addition, we showed that hsa-
miR-185 may control the expression of TCF7 (T-cell-specific
transcription factor 7) and HSP90AA1 (heat shock protein
90 kDa alpha, class A member 1) in Figure 3. TCF7 is a
known regulator of the Wnt signaling pathway [45] and an
important modulator of the self-renewal and differentiation
processes in hematopoietic cells [46]. In contrast,HSP90AA1
is responsible for the degradation of androgen receptor and
cell killing following radiation exposure in a prostate cancer
cell line [47]. In addition, hsa-miR-185 is also known to
be involved in the development of prostate cancer [48].
Our pathway analysis further supports the roles these three
molecules play in carcinogenesis by mapping the interaction
among hsa-miR185-5p, TCF7, and HSP90AA1 to prostate
cancer through the PI3K signaling pathway.

Previous study reported that hsa-miR-107 regulates the
DNA damage response (DDR) and sensitizes tumor cells
by repressing expression of RAD51 and corporation with

miR-222 in olaparib, an experimental chemotherapeutic
agent, thus impairing DSB repair by HR [49]. Elevated
expression of miR-107 has been correlated with PARP
inhibitor sensitivity and reduced RAD51 expression in a
subset of ovarian clear cell carcinomas [49]. The miRNAs
hsa-mir-103 and hsa-mir-107 are upregulated in relation to
insulin sensitivity in an obese mouse model. This suggested
that these miRNAs represent potential biomarkers for type 2
diabetes (themiR-103microRNA precursor is homologous to
miR-107) [50]. The miR-107 negatively regulates the miRNA
let-7 via direct interaction in tumors and in cancer cell
line. Previous study showed that miR-107 increased the
tumourigenic and metastatic potential via inhibition of let-7
and upregulation of let-7 targets in human breast cancer cell
line and in mice model [51]. Our result indicates that miR-
107 is upregulated under 1 Gy dosage of radiation exposure
and this increase in expression is associated with metabolic
pathways and potentially involved in cancer development.
Three genes, MME, YWHAB, and CRKL, were predicted
to interact with miR-107. MME was involved in rennin-
angiotensin pathway and CRKL and YWHAB were involved
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in neurotrophin signaling pathway in our data. Our analysis
demonstrated that miR-107 may cooperate with miR-185-5p
to regulate the cell cycle via YWHAB.This result corresponds
to a previous study, which showed that the miR-107 andmiR-
185, localized in frequently altered chromosomal regions in
human lung cancers, may contribute to regulate cell cycle in
human malignant tumors [52].

In addition, our analysis in Figure 4 suggests that miR-17-
5p and miR-20b-5p may cooperate to exert regulatory effects
on the TCF7 gene. In fact, miR-17-5p and miR-20b-5p are
mature forms of the same precursor family. The microRNA
miR-17-5p has been shown to mediate the transition from
G1 to S phase of the cell cycle and initiate the signal for
proliferation [53, 54]. Moreover, miR-17-5p can act as both an
oncogene and a tumor suppressor gene in different cellular
contexts, underscoring its importance in cell cycle control

[53]. Our finding indicates that miR-17-5p and miR-20b-5p
maymodulate theWnt signaling pathway by regulating TCF7
expression, which in turn affects the activity of the c-Myc and
cyclin D1 complex. This particular process is associated with
thyroid cancer. Thus, under low-dose radiation, changes in
the abundance of miR-17-5p and miR-20b-5p may influence
the cell cycle via interaction with their target gene TCF7 and
modulate the development of thyroid cancer [55, 56].

Our study demonstrates that many miRNAs were upreg-
ulated in response to low-dose radiation, and these radiation-
induced changes may alter cell cycle regulation, affecting cell
rescue, interrupt the generation of NADPH and pentoses
through glycolysis, create imbalance in body fluid home-
ostasis via the renin-angiotensin system (RAS), and finally
modulate cell survival through the neurotrophin signaling. In
conclusion, we have provided comprehensive miRNA-gene
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Figure 5: Potential miRNA-gene interaction network associated with the changes induced by 1Gy of 60Co radiation exposure in human
peripheral blood mononuclear cells.

interaction networks that underlie the mechanisms of dam-
ages induced by varying doses of radiation. Our findings have
built a framework for further validation studies to investigate
the specific molecular signatures of radiation exposure.
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