22 research outputs found

    Determinants and role of chromatin organization in acute leukemia

    No full text
    DNA is compacted into higher order structures that have major implications in gene regulation. These structures allow for long-range interactions of DNA elements, such as the association of promoters with their cognate enhancers. In recent years, mutations in genes that control these structures, including the cohesin-complex and the insulator-binding protein CTCF, have been found in a spectrum of hematologic disorders, and especially in acute leukemias. Cohesin and CTCF are critical for mediating looping and establishing boundaries within chromatin. Cells that harbor mutations in these genes display aberrant chromatin architecture and resulting differences in gene expression that contribute to leukemia initiation and progression. Here, we provide detailed discussion of the nature of 3D interactions and the way that they are disrupted in acute leukemia. Continued research in this area will provide new insights into the mechanisms of leukemogenesis and may shed light on novel treatment strategies

    Cancer-specific CTCF binding facilitates oncogenic transcriptional dysregulation

    No full text
    Background The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, hitherto there is no comprehensive survey of genome-wide CTCF binding patterns across different human cancers. Results To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions, partially with DNA methylation changes, and rarely with sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events exhibit enhancer activities and are induced by oncogenic transcription factors. We validate these findings in T cell acute lymphoblastic leukemia cell lines and patient samples and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. Conclusions Specific CTCF binding events occur in human cancers. Cancer-specific CTCF binding can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer

    A Three-Marker FISH Panel Detects More Genetic Aberrations of <i>AR</i>, <i>PTEN</i> and <i>TMPRSS2/ERG</i> in Castration-Resistant or Metastatic Prostate Cancers than in Primary Prostate Tumors

    Get PDF
    <div><p><i>TMPRSS2</i>/<i>ERG</i> rearrangement, <i>PTEN</i> gene deletion, and androgen receptor (<i>AR</i>) gene amplification have been observed in various stages of human prostate cancer. We hypothesized that using these markers as a combined panel would allow better differentiation between low-risk and high-risk prostate cancer. We analyzed 110 primary prostate cancer samples, 70 metastatic tumor samples from 11 patients, and 27 xenograft tissues derived from 22 advanced prostate cancer patients using fluorescence in situ hybridization (FISH) analysis with probes targeting the <i>TMPRSS2</i>/<i>ERG</i>, <i>PTEN</i>, and <i>AR</i> gene loci. Heterogeneity of the aberrations detected was evaluated. Genetic patterns were also correlated with transcript levels. Among samples with complete data available, the three-marker FISH panel detected chromosomal abnormalities in 53% of primary prostate cancers and 87% of metastatic (Met) or castration-resistant (CRPC) tumors. The number of markers with abnormal FISH result had a different distribution between the two groups (<i>P</i><0.001). At the patient level, Met/CRPC tumors are 4.5 times more likely to show abnormalities than primary cancer patients (<i>P</i><0.05). Heterogeneity among Met/CRPC tumors is mostly inter-patient. Intra-patient heterogeneity is primarily due to differences between the primary prostate tumor and the metastases while multiple metastatic sites show consistent abnormalities. Intra-tumor variability is most prominent with the <i>AR</i> copy number in primary tumors. <i>AR</i> copy number correlated well with the <i>AR</i> mRNA expression (rho = 0.52, <i>P</i><0.001). Especially among <i>TMPRSS2:ERG</i> fusion-positive CRPC tumors, <i>AR</i> mRNA and <i>ERG</i> mRNA levels are strongly correlated (rho = 0.64, <i>P</i><0.001). Overall, the three-marker FISH panel may represent a useful tool for risk stratification of prostate cancer patients.</p></div
    corecore